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Abstract

Many real-world, scanned surfaces contain repetitive structures, like bumps, ridges, creases, and so on. We present

a compression technique that exploits self-similarity within a point-sampled surface. Our method replaces similar

surface patches with an instance of a representative patch. We use a concise shape descriptor to identify and

cluster similar patches. Decoding is achieved through simple instancing of the representative patches. Encoding

is efficient, and can be applied to large datasets consisting of millions of points. Moreover, our technique offers

random access to the compressed data, making it applicable to ray tracing, and easily allows for storing additional

point attributes, like normals.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational geometry
and object modeling - Curve, surface, solid and object representations; E.4 [Data]: Coding and information theory
- Data compaction and compression

1. Introduction

With the increasing capability of 3D data scanning devices,
point set surfaces are increasingly popular. The amount of
acquired geometric information gives rise to an equally
growing demand for data that needs a compressed represen-
tation to be stored, transmitted, processed and rendered ef-
ficiently. Even though using points lessens storage require-
ments (connectivity information is not needed), compression
of massive models is still required to facilitate efficient ren-
dering [RL00, KSW05, HMHB06, YLM06].

We present a compression technique that is particularly
useful in the context of rendering massive datasets. In par-
ticular, we focus on ray tracing, as its performance is less
dependent on scene complexity compared to forward render-
ing algorithms based on rasterization or splatting [Wal04].
The size of datasets we are interested in may exceed main
memory. As a result, performance sporadically and unex-
pectedly stalls when data is needed that still resides on
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disk [PKGH97, YLM06]. Our compression reduces the size
of such a dataset in order to fit in main memory.

Research on geometry compression, including point
clouds, has mainly focused on high compression rates so far.
Most of the existing point cloud compression strategies per-
form decoding in a streaming or sequential fashion, which is
suitable for rasterization-based display algorithms, and also
enables progressive transmission (e.g. [BWK02, KSW05]).
On the other hand, little attention has been given to the prop-
erty of random accessibility [KCL06], which enables decod-
ing a local part of the compressed data without having to
decode the full dataset. This is similar to audio and video
compression [MPFL96], where the data stream has to be re-
constructed from any given point in time. The random access
property is essential in combination with ray tracing, as point
information has to be queried locally [HMHB06].

We introduce a compression technique based on geomet-
ric self-similarity. Many real-world surfaces consist of repet-
itive patterns and similar structures, such as creases, ridges,
bumps, smooth parts, etc. A similar assumption was also
used in a recent image processing algorithm [BM05]. Also,
the typically uniform sampling rate of scanned objects con-
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tributes to self-similarity. To exploit repetitiveness, we seg-
ment the object into well-chosen patches and we cluster
patches that “look alike”. Similar patches can then be repre-
sented by a single patch. Finally, the decoding process sim-
ply boils down to instancing. This can be viewed as an exten-
sion to the idea of vector quantization [LBG80]. The main
difficulty is to efficiently describe and search these simi-
lar patches in the huge data set. Therefore we introduce a
compact geometric patch descriptor, which will guide the
clustering process. An important feature of our compression
scheme is that it easily affords random access, which makes
ray tracing possible without the need of a full decoding step.

Our method is designed for compressing real-world sur-
faces, ideally with a uniform sampling rate, like those ob-
tained from a laser scanner. Its performance is dependent on
the degree of geometric self-similarity, and assumes that the
point cloud represents a 2D surface (as opposed to a 3D scat-
ter plot, for instance).

2. Related Work

Compression: We restrict our discussion to point cloud
compression. A good overview of recent mesh compres-
sion techniques is given by Alliez and Gotsman [AG05]. In
the QSplat framework [RL00], compactness is achieved by
quantizing the offsets in each hierarchy node using a fixed
length bit string. Botsch et al. [BWK02] propose to quan-
tize points onto an integer lattice, and represent them in a
sparsely populated octree. Gandoin et al. [GD02] propose
a similar coding technique, but employ a kD-tree instead.
Huang et al. [HPKG06] and Schnabel et al. [SK06] discuss
an improved octree-based coder by incorporating prediction.
Fleishman et al. [FCOAS03] using Moving Least Squares
(MLS) in conjunction with progressive coding. Waschbüsch
et al. [WGE∗04] proposed multi-resolution predictive cod-
ing. Krüger et al. [KSW05] quantize onto a 3D hexago-
nal grid. The model is sliced into 2D contours which are
coded linearly as the trajectory throughout the hexagonal
grid, and can be decoded efficiently on graphics hardware.
Gumhold et al. [GKIS05] and later Merry et al. [MMG06]
use an approach based on spanning trees to sequentially en-
code points. Ochotta et al. [OS04] partition points into near-
planar segments in which the surface is regularly resampled
and stored as a height field. Each height field is compressed
using wavelets. Our technique also segments the surface, but
we replace similar patches by a single representative patch.

Unfortunately, previous techniques do not allow random
accessibility, needed for ray tracing (see Section 1), without
decompressing the full dataset in main memory. Predictive
coding approaches [WGE∗04, KSW05, GKIS05, MMG06]
always rely on previous points in the sequence during de-
compression. The techniques based on hierarchical spatial
subdivision [RL00,BWK02,GD02,HPKG06,SK06] also re-
quire to decode the full set because the trees do not contain
pointers anymore to reduce memory footprint.

To our knowledge the only point cloud compression tech-

nique that allows random accessibility is the Quantized
kD-tree [HMHB06]. It achieves compression by quantizing
the splitting planes of a kD-tree which contains the data
set. However, the Quantized kD-tree only stores positions,
whereas our technique can easily compress additional at-
tributes like normals.

Ray Tracing: Most of the work in ray tracing is focused
on displaying triangle meshes. A discussion of these meth-
ods is beyond the scope of this paper and we refer to Wald’s
Ph.D thesis for an overview [Wal04]. Several authors have
proposed methods to compute intersections with a point-
sampled surface. Key in ray tracing points is to “fill in
the gaps” between points. This can be done either based
on heuristics [SJ00], or using a formal surface definition.
The latter is usually realized using Moving Least Squares
(MLS) [Lev03, AA03], which locally fits a high order poly-
nomial surface to the points. Simple variants of MLS can be
very efficient [AA04, AKP∗05, WS05, HMHB06]. We will
also use an MLS-based surface intersection in our imple-
mentation.

Ray tracing extremely complex scenes can be realized
through out-of-core techniques, i.e., by dynamically loading
required parts of the dataset into main memory. To this end,
Pharr et al. [PKGH97] and later Wald et al. [WDS04] devel-
oped an efficient technique that caches scene parts in main
memory. Level-of-detail (LOD) techniques are also useful to
speed up ray tracing massive data sets. Sung et al. [YLM06]
use an LOD representation to reduce memory access. Even
though these schemes are efficient, in the end disk access is
still required, and stalls are unavoidable. Like the Quantized
kD-tree [HMHB06], our compression scheme can further al-
leviate such problems by significantly reducing the memory
footprint.

Shape Matching: Our algorithm establishes similarities be-
tween patches using techniques inspired by shape match-
ing. Shape matching is a well studied problem, with ap-
plications to surface registration [BM92] and 3D model re-
trieval [F∗03]. Two shapes can be compared directly using
their geometry, e.g., using the Hausdorff distance. This turns
out to be expensive if many shapes need to be compared.
Researchers have therefore developed more concise geomet-
ric descriptors, which can be computed efficiently on a per-
shape basis, and compared afterward using a suitable norm.
The simplest descriptors measure geometry-related statis-
tics, such as moments [PR92], normal distributions [Hor84],
and histograms of pairwise distances [AKKS99, OFCD02].
More elaborate descriptors automatically ignore the dif-
ference in rotation [F∗03], and explicitly analyze topol-
ogy [HSKK01]. An important difference with existing work
is that we do not wish to match entire surfaces, but only small
surface patches. The topology of a patch is much simpler
than typical full 3D models. We already achieve successful
results with using a relatively simple descriptor based on the
normal distribution of a patch [Hor84].
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Figure 1: Overview of the compression scheme: we construct equally-sized patches (illustrated as different colors) and compute

a shape descriptor for each patch. Next, we group patches with similar descriptors, pick a representative patch within each group

and store it in a code book. Finally, we replace all patches by a reference to their corresponding representative patch.

3. Overview

We give a short high-level overview of our compression
technique (see Figure 1), before going on to the detailed de-
scription.

The key idea is to exploit the typical repetitiveness of real-
world surfaces, like recurring smooth parts, bumps, ridges,
etc. To this end, we divide the surface into patches, and re-
place each one by a reference to an entry in a concise list of
representative patches. We obtain patches by segmenting the
surface. This segmentation favors patches that are equally-
sized, which makes the comparison more meaningful. Also,
patches are encouraged to lie on salient geometric features,
in order to improve the likelihood of finding a similar and
well-aligned match.

Similar patches are then clustered in order to form a
compact code book, in the same spirit as vector quantiza-
tion [LBG80]. We create clusters by selecting a represen-
tative patch, and adding all similar candidates. Unsuitable
candidates are re-clustered. We repeat this process on the re-
mainder of the patches until all belong to a cluster. Finally,
each representative patch will form an entry (or word) in the
code book, while replacing all cluster members by a refer-
ence to this entry. The clustering process requires a means
of comparing patches against each other for measuring sim-
ilarity. Comparison should be implemented efficiently, in or-
der to deal with large datasets. Patches consist of a small
set of points, which could be compared using the Haus-
dorff distance, for instance. However, this is cumbersome
and slow, and it is not clear how to use this distance mea-
sure in conjunction with an efficient nearest neighbor accel-
eration structure. We therefore compute a simple statistical
shape descriptor for each patch, which essentially translates
the patch to a representative vector that can be compared di-
rectly. We also take care in aligning the patches. First, we
normalize the orientation of each patch before clustering.

Once a patch has been assigned to a cluster, we further refine
alignment using a surface registration algorithm [BM92].

4. Self-Similarity-Based Compression

In this section we discuss every phase of the algorithm in
more detail. We first segment the surface to obtain patches,
we compute patch descriptors, and cluster them to construct
the code book.

4.1. Patch Creation

Patch creation is driven by a simple segmentation strategy,
which respects two objectives:

1. Equal size, convexity and isotropy The matching
process becomes more meaningful if patches have equal
area, are similarly shaped (i.e. round), and have no holes.
For instance, it does not make sense to compare a slivery
patch to a round one, since they cannot be replaced by
each other in the first place.

2. Feature Attraction Two patches may contain the same
geometric feature (e.g., ridges and bumps), but the feature
itself may not necessarily be aligned with respect the the
patch centers. We therefore encourage patch centers to lie
on salient features.

We now define each patch Pk with center ck as the sub-
set of points that lie within a sphere of radius R. Given a
well-chosen radius and patch centers ck, we can meet ob-
jective (1). We want to minimize overlap on one hand, but
also ensure a tight packing. We must therefore find a set
of evenly distributed ck’s. More precisely, we optimize the
ck’s such that they lie at a fixed distance from their neigh-
bors, and take radius R as this distance. To achieve this goal,
we use Pauly et al.’s particle simulation technique [PGK02],
which was originally developed for point cloud simplifica-
tion. Their method starts with a random distribution of point
samples on the point cloud (the ck’s in our case), and subse-
quently applies repulsion Turk’s repulsion algorithm [Tur92]
to evenly spread them. Repulsion is an iterative procedure

c© The Eurographics Association 2007.



Erik Hubo / Self-Similarity-Based Compression of Point Clouds,with Application to Ray Tracing

Patch X histogram Y histogram

Figure 2: Example patches with their corresponding de-

scriptors, taken from the David model. Patch shapes range

from flat to curved, and their different shapes are reflected

by the histograms of the normals’ X and Y coordinate.

that pushes surface points within a specified radius away
from each other, while constraining them to remain on the
surface defined by the underlying point cloud [PGK02]. This
process is repeated until convergence.

We extend this method further to meet objective (2). We
alternate the repulsion iteration with a “feature attraction”
step, which basically updates patch centers toward salient
surface points:

ck :=
1

∑p∈Pk
Cp

∑
p∈Pk

Cp p

Here, we perform a normalized weighted summation over
all points p in patch Pk. Each weight Cp measures how
“salient” point p is. Mean curvature is a viable candidate,
which can be approximated well via local covariance analy-
sis [PGK02]. However, for efficiency, we use a simple mea-
sure based on local normal variation. At each point p, we
compute the standard deviation of the dot products np · nq

with the normals from neighboring points q. See Figure 1
for an example of our segmentation.

4.2. Measuring Similarity Among Patches

Before we can group similar patches (see Section 4.3), we
need a way to measure how similar they are to each other.
The challenge in comparing two patches is to first make sure
they are well-aligned. Next, we compute a concise patch de-
scriptor, and discuss how these can be compared in a mean-
ingful way.
4.2.1. Translation and Orientation Normalization

Before two patches can be compared, we need to discount
any differences in translation and orientation. Scale and
anisotropy [KFR04] are irrelevant, since patches are equally
sized and isotropic. Translation can be easily disregarded
by moving each patch so that its centroid lies at the ori-
gin. Orientation-invariant descriptors [KFR03, F∗03] exist,
but they rely on a fairly complicated volumetric analysis us-
ing Spherical Harmonics. Instead, we estimate orientation
separately, and rotate them to a canonical frame before com-
parison [SV01]. We will reuse the orientation information
afterward as an initial guess for exact alignment (see Sec-
tion. 4.3).

In contrast to full 3D objects, a patch only represents a
small part of a surface. It looks like a distorted disk (see Fig-
ure 2), and is often flat. General shapes can be aligned using
Principal Component Analysis [SV01]. However, this tech-
nique is less meaningful on isotropic and flat shapes (like our
patches), and does not work well in practice [KFR03,F∗03].
We use a simple but robust heuristic, which exploits the par-
ticular morphology of our patches’ shape. Since patches are
usually close to flat, they all can be oriented such that their
supporting planes coincide. To do so, we find a rotation that
makes the mean patch normal aligned with the Z axis. How-
ever, this rotation is not unique, leaving us with one degree
of freedom, i.e. the rotation around the Z-axis. We compute
the spherical coordinates of each normal in the patch (with
respect to the Z-axis and some freely chosen orthonormal X
and Y axes), but only keep the azimuthal component θ . The
patch is then rotated around the Z-axis by −θµ , where θµ is
the mean azimuthal angle θ within the patch.

4.2.2. Computing and Comparing Descriptors

For efficiency reasons, we use a simple statistical descriptor.
Inspired by Extended Gaussian Images [Hor84], we com-
pute a histogram from a patch’s normal directions. Since
patches are fairly flat, we do not have to compute a full
spherical histogram, but only consider (upward) hemispher-
ical directions. This allows for a simple 2D parameterization
based on a normal’s X and Y coordinate, both conveniently
bounded to [−1,1]2.

The similarity between two patches can then be evaluated
using any distance measure suitable for histograms. We can
classify such measures into bin-by-bin and cross-bin mea-
sures [RTG00]. Bin-by-bin techniques, like the Minikowski
(LN ), Kullback-Leibner or Bhattacharyya distance [Bha43],
only compare corresponding histogram bins, disregarding

c© The Eurographics Association 2007.



Erik Hubo / Self-Similarity-Based Compression of Point Clouds,with Application to Ray Tracing

information in nearby bins. In contrast, cross-bin techniques
take into account non-corresponding bins as well, and are
thus more powerful [RTG00]. A popular cross-bin measure
is the Earth Mover’s Distance (EMD) [WPR85, RTG00],
which computes the minimal cost for flowing “bin matter”
from one histogram to form the other. Unfortunately, EMD
requires solving the transportation problem [Hit41], which
involves a costly optimization step. To retain efficiency, we
will use the match distance, a simple cross-bin dissimilarity
measurement designed for 1D histograms [SW83, WPR85]:

d(H,G) = ∑
i

|Ĥi − Ĝi| (1)

where Ĥi = ∑ j≤i H j is the cumulative histogram of H, and
similarly for histogram G. The match distance is defined as
the L1 distance between their corresponding cumulative his-
tograms, which can be computed very efficiently. For 1D his-
tograms with an equal number of bins, this distance is in fact
a special case of EMD [RTG00].

The match distance cannot be extended to multi-variate
histograms, like the one we compute for the X and Y coor-
dinate. We therefore compute two 1D histograms for each
coordinate separately. This approximation turns out to work
well in practice. A comprehensive visual example of the his-
tograms is given in Figure 2. The X and Y histograms are
converted to their cumulative version, and concatenated into
a single descriptor vector. Finally, we can simply perform a
comparison on this vector using the L1 distance, in conjunc-
tion with an efficient data structure like the kD-tree.

In practice we apply a nonlinear transformantion to each
coordinate, which “stretches” the range around 0. The tanh-
function does a good job at this. This technique increases bin
resolution near the origin, which is useful for capturing fine
normal variations close to the Z-axis. This is improves dis-
crimination performance, since many normals tend to point
upward.

Even though our normal-based descriptor [Hor84] may
lack discriminative power, and was simplified to 1D his-
tograms, it does a reasonable job. Patches that are wrong-
fully considered similar can still be discriminated later on in
the registration step 4.3.

4.3. Code Book Generation

Similar patches are clustered and replaced by a reference to
a representative patch. All representatives or code words are
stored in the code book, as in standard vector quantization.
The overhead of replacing the patch by a code word is the
code book index (1 integer) and the patch orientation and
translation (6 real values). Compression is achieved when
the code book size and overhead are much smaller than the
original patch set, which is usually the case.

Code book generation boils down to grouping similar
items (patch descriptors) together, which can be seen as a
clustering process. Various clustering algorithms exist, and

have been applied to vector quantization [LBG80, Llo82].
However, we will use a non-iterative greedy approach, which
will give us some control over how representatives are cho-
sen. We start off by selecting a representative patch P, and
look for a set of all similar patches. P is put in the code
book and we replace each similar patch by a reference to P,
along with its orientation and translation. This process then
continues until all patches have been replaced. We always
select the patch P which has the smallest curvature in the
pool of the remaining patches. This ensures that patches are
always replaced by a conservative candidate, i.e. a smooth
one. Replacing a slightly curved patch with smooth one is
visually not as disturbing as replacing a smooth patch with
slightly curved one. This way, the compression introduces
over-smoothing instead of more salient artifacts.

The set of similar patches reduces to a nearest neighbor
query in the space of descriptor vectors (see Section 4.2). To
make this process tractable, we use a kd-tree that performs
queries with the L1 norm. The radius of the query determines
how many code words will be created.

In each cluster, we need to compute the relative align-
ment of each patch, i.e. translation and rotation, with re-
spect to its representative patch. This has already been ac-
complished partially, since all patches were already trans-
formed to the canonical frame in the normalization process
(Sec. 4.2.1). However, this was only an approximate esti-
mate of alignment. We therefore refine the orientation and
translation parameters via the Iterated Closest Point algo-
rithm [CM92, RL01]. It usually only takes a couple of itera-
tions to convergence.

The descriptor does a reasonable job at assessing similar-
ity. Unfortunately, it may happen that a patch is wrongfully
assigned to a representative. We therefore measure error us-
ing MLS [Lev03,AA04] after the final alignment step. If the
error exceeds a threshold, it is put back in the list of to-be-
clustered patches.

5. Ray Tracing the Compressed Data

In principle, any point cloud ray tracing method which sup-
ports instancing, can be applied to our algorithm. Here, we
describe an efficient algorithm inspired by Wald and Seidel’s
kd-tree-based technique [WS05].

We start by building a kD-tree to perform ray-patch in-
tersections, based on patches’ bounding spheres. Compared
to ray tracing with the Quantized kD-tree, we can afford to
apply the SAH heuristic, which offers more efficient inter-
section queries [WS05]. Once a candidate sphere has been
found, we load the corresponding representative patch from
the code book. Finally, we intersect the patch surface using
MLS [AA03, AA04], taking into account its locally stored
translation and rotation. As seen in Section 4.1, the patches
overlap to avoid holes. To avoid seams, overlapping patches
are blended together along the ray [OBA05]. More precisely,
we compute intersections with every intersected patch, and

c© The Eurographics Association 2007.



Erik Hubo / Self-Similarity-Based Compression of Point Clouds,with Application to Ray Tracing

(a) (b)

Figure 3: (a)plot of compression ratio vs. code book ratio

for the David model. This plot indicates the overhead intro-

duced by our method. (b) illustrates a theoretical plot of the

maximum code book ratio vs. the patch size for a model. The

plot is model dependent.

simply compute a normalized weighted summation of the
intersections. Weights are defined using a simple Gaussian
curve, based on the distance to the patch centers, with stan-
dard deviation equal to the patch radius.

6. Results

As suggested by Waschbuch et al. [WGE∗04] we use the
peak signal to noise ratio (PSNR) to measure the loss of
quality, given as 20log10

dB

max(RMS(U,C),RMS(C,U))
. U is the

original uncompressed point cloud and C the compressed
point cloud, dB is the bounding box diagonal of U and RMS

is the symmetric root mean square distance. When taking the
RMS as error measure, it is preferable to measure the RMS

between the surfaces as the distance between discrete point-
pairs (e.g Hausdorff distance). This takes into account the
difference of the sampling as well. An MLS error, on the
other hand, only gives the distance between the surfaces, but
ignores the underlying sampling, which plays an important
role for point clouds [WGE∗04, SK06].

First, we show the difference between the compression
ratio and the code book ratio. This is the ratio of the origi-
nal number of patches vs. the number of patches in the code
book. We can influence the code book ratio by changing the
maximal search distance of the nearest neighbor query in the
patch space. As shown in Figure 3(a), these two ratio’s are
not the same indicating the overhead introduced by our al-
gorithm. This overhead is a natural result of the transforma-
tion information which is stored for each patch. The transfor-
mation overhead is inversely proportional to the number of
patches. This means, patches should be as big as possible to
reduce this overhead. However, using big patches results in
very low patch compression ratios (see Figure 3(b)) because
big patches can not be replaced as easy as small patches.
We have tested our compression scheme on several models
of the Stanford scanning repository: Bunny (32 K points),
Night (11 M points), Lucy (14M points) and David (28 M
points). In practice we take #points

10 patches for a small model

like the Bunny, and #points
100 for big models like David.

(a) (b)

(c) (d)

Figure 4: R-D curves of our compression scheme for (a)

David (b) Lucy (c) and bunny. The normals are compressed

with the same amount of bits. In Figure (d) we give an

R-D comparison of our method vs. the quantized kd-Tree

[HMHB06].

In Figure 4, the R-D (compression rate vs. distortion)
curves are plotted for the David, the Lucy and the bunny
model. In these figures, the horizontal axes and vertical axes
give the position/normal coding bit rates and the correspond-
ing PSNR values, respectively. The plots indicate that our al-
gorithm has very good PSNR values for low bit rates for big
data sets. Our technique performs not as well at compress-
ing small models, like the bunny, because the transformation
overhead dominates in that case.

In Figure 4(d) we compare with the quantized kD-
tree [HMHB06], which also aims at random access com-
pression. However, this comparison should not be overin-
terpreted. Quantization techniques [RL00,BWK02,KSW05]
reduce real-valued information like coordinates to integers,
and thus generally have a lower PSNR, even though visually
they might still produce acceptable results. However, it is im-
portant to notice in Figure 4(d) that our technique seems to
behave fairly well in terms of quality loss as the compression
is increased.

A comprehensive visual example of different compres-
sion rates on the same model (David) is shown in Figure
6. The colors represent the used code book patches. Our
technique always instances uncompressed data. It is there-
fore less sensitive to unnatural banding artifacts, as often
seen with quantization-based methods [BWK02, KSW05].
Our technique was also tested on different models, see Fig-
ure 7 for some examples.

We compared the rendering times of a compressed and
uncompressed David model. Since the uncompressed model
could not fit entirely in main memory, disk access was
needed during rendering, leading to performance stalls. On
average the rendering times dropped 2 to 10 times when
compared with the compressed one, see Figure 5. Most sig-
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Figure 5: This plot shows the rendering time per frame

in seconds for a prerecorded camera sequence for a com-

pressed and an uncompressed model David model. The com-

pressed model fitted in the main memory while the uncom-

pressed did not fit into the main memory and required disk

access during rendering, leading to a decreased perfor-

mance. The peaks are caused by significant camera move-

ments, and small rotations, in these cases large parts of the

model needed to be loaded from disk into main memory.

nificant decreases were measured when the model was ro-
tated, or when the camera switched to a new view.

The total processing time of our algorithm can be di-
vided in two parts: the segmentation phase and the cluster-
ing phase. The first phase may take up to several hours until
convergence, but its result can be reused to achieve different
compression ratios. The clustering phase, on the other hand,
already finishes in 30 minutes (David model). Note that this
is measured on an unoptimized implementation.

7. Conclusion and Future Work

In this paper, we introduced a compression method for
point sampled models. It exploits the repetitive structure of-
ten encountered in real-world, scanned surfaces. Our tech-
nique can be seen as an extension of vector quantization for
the case of point clouds: the surface is divided into small
patches, which are then clustered. Decompression is realized
by instancing a representative patch of each cluster. A par-
ticular advantage of our appoach is the ability of randomly
accessing parts of the data without having to reconstruct the
full model. It can therefore be used in conjunction with ray
tracing [HMHB06].

By decreasing the size of the patches, we trade com-
pression ratio for an increased likelihood of finding suitable
matches. So far, patches are all equally sized and fairly small
(100 to 1000 points). We would like experiment with differ-
ently sized patches. We also plan to include additional point
attributes in the algorithm, like colors and material parame-
ters, and introduce Level-of-Detail [YLM06,HMHB06]. Fi-
nally, we wish to apply our method to forward rendering, by
exploiting instanced rendering using graphics hardware.
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same bit rates as the points.
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