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ABSTRACT

Both ray tracing and point-based representations provide means to
efficiently display very complex 3D models. Computational effi-
ciency has been the main focus of previous work on ray tracing
point-sampled surfaces. For very complex models efficient storage
in the form of compression becomes necessary in order to avoid
costly disk access. However, as ray tracing requires neighborhood
queries, existing compression schemes cannot be applied because
of their sequential nature. This paper introduces a novel accelera-
tion structure called the Quantized kd-tree, which offers both effi-
cient traversal and storage. The gist of our new representation lies
in quantizing the kd-tree splitting plane coordinates. We show that
the Quantized kd-tree reduces the memory footprint up to 18 times,
not compromising performance. Moreover, the technique can also
be employed to provide LOD (Level-Of-Detail) to reduce aliasing
problems, with little additional storage cost.

1 INTRODUCTION

The ever-increasing demand for more geometric detail persists.
Through the acquisition of real-world objects using 3D scanning
devices, complex models are easily obtained. The sheer num-
ber of surface elements in scanned datasets advocates the use of
a point-based representation. The conceptual simplicity of points
scales well for large datasets. It has emerged as a viable alternative
for traditional primitives such as triangles and parametric surfaces
[19, 26, 23]. The main goal in this paper is to efficiently display
huge sampled models, possibly consisting of tens to hundreds of
millions of points.

Even though using points lessens storage requirements (e.g. by
not storing connectivity information), compression is still required
for real-world applications. A scene of 80M points for instance,
already requires 1GB of memory just for storing 3D positions at
32 bit precision, excluding normals and colors. We wish to render
such and even larger objects without requiring expensive disk ac-
cess. Compressing the models in main memory can be a solution
for this. Several authors have already proposed general compres-
sion schemes for point set surfaces [10, 22, 34] also in the context
of efficient rendering [26, 8, 17].

Traditionally, point-sampled models have been displayed using
splatting-based rasterization [23, 36]. Hierarchical representations
such as QSplat [26] and Sequential Point Trees [9] offer output-
sensitive rendering by displaying the model at a resolution that
matches the display’s sampling rate. This technique is also ap-
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plicable to ray tracing, as is for instance shown by Wand et al.
[33]. However, ray tracing offers the additional advantage of only
processing the point samples that are visible from the vantage point,
which essentially boils down to occlusion culling [5]. This is im-
portant for displaying very complex datasets, which may exhibit
high depth complexity. An additional advantage of ray tracing is
that it can be parallelized readily, and high quality shading effects
like shadows, transparency and reflections can be added easily. A
number of authors already developed methods for ray tracing point
sets [27, 3, 2]. Recently, Wald and Seidel showed how interactive
ray tracing can be realized using a simple surface representation and
an efficient kd-tree acceleration structure [32]. Our work is similar
to Wald and Seidel’s, but we focus on memory efficiency instead of
interactive performance.

Ray tracing is only efficient as long as the scene can be stored in
main memory [24]. Otherwise, expensive disk access may impact
performance drastically. Given the vast size of scanned objects,
this may not always be possible. We seek to reduce the memory
footprint of the scene in main memory. Point compression schemes
encode and decode points in a streaming or sequential fashion and
can therefore be trivially combined with rasterization-based display
algorithms (e.g. Krüger et al. [17]). Unfortunately, this is not the
case for ray tracing. Intersection queries depend on a local neigh-
borhood of points [3], thereby relying heavily on spatial querying.
Such queries cannot be carried out on an unstructured stream of
points, unless it is decoded fully and arranged in a spatial data struc-
ture before rendering. The latter is an unacceptable alternative as it
requires to have the fully expanded dataset in main memory. Com-
pression schemes based on spatial subdivision [26, 8] seem more
applicable at first sight. However, such schemes discard full refer-
encing to child nodes (i.e. pointers) in favor of memory efficiency.
Therefore, every node in the tree has to be visited during nearest
neighbor queries which results in an impractical linear time com-
plexity.

The problem of spatial querying has been studied in many fields.
The kd-tree [7] is a popular acceleration structure for spatial queries
[14, 29, 32], due to its efficiency and simplicity. It can be seen as
a generalization of a binary search tree for multiple dimensions.
For low dimensional problems such as ours, a simple left-balanced
kd-tree is known to perform well.

Our main contribution is a novel variant of the kd-tree, dubbed
the Quantized kd-Tree, which compresses both the spatial data
structure and the data set through quantization of the split plane
positions. It aggressively decreases the memory footprint at the ex-
pense of reduced precision. Even though the loss of information
seems high, the error decreases when storing more points. Since
we are mainly interested in dealing with very large datasets, the
precision problem is alleviated.

We also show how the Quantized kd-Tree can be used to imple-
ment ray tracing with LOD to avoid aliasing and improve perfor-
mance, with little additional memory consumption.



2 RELATED WORK

Point-Based Representations. Raw point data by itself is
inappropriate for efficient rendering. Previously, researchers have
developed useful point-based representations to this end.

The Moving Least Squares (MLS) formulation rigorously de-
fines a surface through a point cloud by locally fitting a high order
polynomial [18], typically for the purpose of reconstruction. This
representation lies at the basis of many techniques for ray tracing
points clouds [3, 4, 28, 1, 32].

Another body of work focuses on representations for efficient
rasterization. Splatting [26, 23, 36] resamples points in screen-
space for anti-aliased rasterized display without holes. QSplat [26]
and the Surfels framework [23] represent a point cloud at multi-
ple resolutions using a hierarchy. During rendering, the appropri-
ate Level-Of-Detail can be fetched from the hierarchy depending
on viewing distance and desired rendering speed. Sequential Point
Trees [9] use an optimal flattening of an octree hierarchy for effi-
cient display with LOD using graphics hardware.

Ray Tracing. In the past 2 decades, speeding up ray tracing
[35] has been investigated extensively. Most of this work is focused
on displaying triangle meshes. A discussion of these methods is
beyond the scope of this paper and we refer to Wald’s PhD thesis
for an overview [29].

Several authors have proposed methods to compute intersections
with a point-sampled surface. Schaufler and Jensen [27] presented
a heuristic ray-surface intersection test, but it inconsistently recon-
structs the surface w.r.t. ray direction. Adamson and Alexa [3] for-
mulated intersection queries using MLS [18]. To improve perfor-
mance, the same authors [4] proposed to fit a first order polynomial
which yields satisfactory reconstruction. Similar reconstruction
strategies were later adapted by Adams et al. [1], Shen et al. [28]
and Kolluri [16]. Wald and Seidel [32] also used the first order
approximation in conjunction with an efficient kd-tree implementa-
tion, and obtained interactive rendering rates. However they store a
precomputed local neighborhood for each point, which is a signifi-
cant additional memory cost. We use a similar strategy to Wald and
Seidel’s, but focus on compression rather than interactivity. There-
fore, we do not store the local neighborhoods for each point in the
tree, but we query them on the fly, resulting in a slower but less
memory consuming implementation.

Wand and Straßer [33] proposed high-quality ray tracing using
a multi-resolution representation. Our quantized kd-tree also sup-
ports multi-resolution rendering, which we apply for anti-aliasing
and a better rendering performance.

Ray tracing extremely complex scenes may be realized through
out-of-core techniques, i.e., by dynamically loading required parts
of the dataset in main memory. To this end, Pharr et al. [24] devel-
oped an efficient technique that caches scene parts in main memory
for the purpose of efficient off-line ray tracing. Wald et al. [30] pro-
posed a caching scheme for interactive ray tracing. Even though
this scheme is efficient, in the end disk access is still required, and
stalls are unavoidable. Therefore Wald et al. [30] propose a fall
back solution by displaying an approximate image-based represen-
tation when data has not yet been loaded in main memory. Our
compression scheme may further alleviate such problems by sig-
nificantly reducing the memory footprint.

Compression. We restrict our discussion to point cloud com-
pression. A good overview of recent mesh compression techniques
is given by Alliez and Gotsman [6].

In the QSplat framework [26], compactness is achieved by quan-
tizing the offsets in each hierarchy node using a fixed length bit
string, resulting in lossy compression. Botsch et al. [8] propose
to quantize points onto an integer lattice, and represent them in
a sparsely populated octree. Gandoin et al. [11] propose a simi-
lar coding technique, but employ a kd-tree instead. Fleishman et

al. [10] used MLS to implement progressive coding of surfaces.
They sample an initial (low resolution) point set from the MLS sur-
face, then encode a sequence of refinements using this point set.
Ochotta et al. [22] partition points into near-planar segments in
which the surface is regularly resampled and stored as a height field.
Compression is based on bitmap wavelet encoding. Waschbüsch
et al. [34] proposed multi-resolution predictive coding. Krüger et
al. [17] quantize onto a 3D hexagonal grid. The model is sliced into
2D contours which are coded linearly as the trajectory throughout
the hexagonal grid. This scheme is highly efficient and can be de-
coded using graphics hardware. Gumhold et al. [12] and later Merry
et al. [21] use an approach based on spanning trees to sequentially
encode points in an optimal fashion.

Unfortunately, these techniques do not allow for spatial querying
without decompressing the full dataset in main memory. Predictive
coding approaches [34, 17, 12, 21] always rely on previous points
in the sequence during decompression. The techniques based on
hierarchical spatial subdivision [26, 8, 11] also require to decode
the full set because the trees are not complete1 and pointers are
discarded. It is possible to store and traverse a non-complete tree
without pointers, but only in breadth first order, as the offsets to a
child in the next level cannot be computed directly. Unfortunately,
the cost of storing pointers is linear in the number of points, and
the amount of bits required per pointer is always significant2. We
avoid storing pointers and the full traversal problem by employing
a complete tree (see section 3).

Closest to our work is Mahovsky and Wyvill’s memory-
conserving bounding volume hierarchy for ray tracing [20]. They
also use quantization to reduce memory footprint, but it only applies
to the bounding volume data, while our technique simultaneously
compresses the geometric data and the acceleration structure. Also,
their method still requires storing costly pointers.

Finally, Kalaiah and Varshney [15] use a statistical representa-
tion of point clouds for compression, but it is unclear how to apply
this in the context of ray tracing.

3 THE QUANTIZED KD-TREE

In this section, we introduce a novel acceleration structure called
the Quantized kd-Tree, which will represent point positions in a
compressed format.

3.1 Constructing a Left-Balanced kd-tree

Before detailing our method, we give a short review of a left-
balanced kd-tree, on which our Quantized kd-tree is based.

A kd-tree [7] is a binary tree which subdivides space into axis-
aligned box-shaped regions. In each node, a so-called splitting
plane divides the point set into 2 partitions. The choice of the
splitting plane controls the topology of the tree. A balanced kd-
tree is constructed by placing the splitting plane on the median ele-
ment in the current subtree (see figure 1(a)). Jensen [14] proposed a
balanced kd-tree implementation for efficient spatial queries in the
context of photon mapping. It restricts elements to be balanced to
the left side of the tree such that one obtains a complete tree. It can
therefore be stored as a contiguous block of memory (i.e., using a
heap) and traversal can be carried out without pointers. More details
about the left-balanced kd-tree can be found in Jensen’s book [14].
The latter quality makes it a very memory-efficient representation.
In Jensen’s version, each kd-tree node will contain the entire point
(or photon) information which also specifies the split plane posi-
tion. As will be explained in the next section, each Quantized kd-

1I.e., the number of children varies per node.
2Wald [29] can afford to discard bits in tree pointers, due to the nature

of his memory layout. This reduces the size only by 7%.
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Figure 1: Comparison between a median split in a regular kd-tree
(a) and in a Quantized kd-tree (b) in 1D. In (a) the split position is
stored exactly, while in (b) quantization of the split offset leaves us
with an uncertainty about the actual position. Classification of the
points to child1 or child2 during construction of the tree is based on
the real median position. Yet, while traversing, the exact position
of the splitting point is no longer known. To account for this we
let the two bounding intervals of the children overlap by the width
of the quantization step. Note how the precision (i.e. the size of
quantization intervals) is refined as we go from the parent to the
children.

tree node will contain only a split plane position, from which the
actual point positions will be inferred.

Wald et al. [31] note that balancing may have a negative impact
on performance. Fortunately, this loss is only significant for highly
unevenly distributed point clouds (e.g. a caustics photon map in
their case). However, most point-sampled models exhibit a fairly
uniform distribution of points. Wald et al. report that for diffuse
photon maps, which are closer to uniform, the performance loss due
to using balancing is roughly 25%. This sacrifice will be necessary
in order to achieve a compact memory footprint.

3.2 Construction of the Quantized kd-tree

The quantized kd-tree is similar to the left-balanced kd-tree [14],
but differs in several ways:

• In each node we only store the split plane position d. d will
be stored as offset d ∈ [0,1) w.r.t. the current kd-tree node’s
bounding box, rather than its absolute position in object space,
using a short integer (bit string of length q) as opposed to a
real number. In other words, d is quantized. However for
the classification of the data to the left or right child the real
median point is used, since we want to have a left-balanced
tree.

• Point positions are not stored alongside the kd-tree nodes. The
actual coordinates of a point will be derived from the split
plane positions in the tree. Since the splits d are actually off-
sets w.r.t. the current bounding box, the kd-tree recursively
refines a point’s position as one goes deeper down the tree
(see Figure 1).

• Points are represented only by the leaf nodes, while in
Jensen’s version, both leaf and inner nodes represents points.
Since a point’s coordinates are defined recursively by the
(quantized) split positions, points that would be stored higher
up in the tree would be represented at a much lower precision.

The quantization implies that the actual split plane position is
no longer known exactly. However, we know that it has to lie on

an interval [ D
2q ,

D+1
2q ], with D = ⌊2qd⌋ (see figure 1(b)). This “un-

certainty” has 2 implications. First of all, it will affect how range
queries are carried out (this will be discussed later). Second, it re-
duces the precision at which points are stored.

Let us first look at how the points are stored.

X1 X2

Y1 Y2 Y3 Y4

Z7 Z8Z5 Z6Z3 Z4Z1 Z2

XYZ Z Z Y Z

(a) (b)

Figure 2: (a) Due to the construction of the tree, the 4 left (right)
leaf nodes retain the same X coordinate. This results in large errors.
We work around this problem by storing each splitting plane’s (X,
Y and Z) quantized value in the leaf nodes. (b) (upper)case: data
(blue) is stored in last level. The entire red part of the tree is not used
which yields to enormous compression overhead (b) (lower)case: data
(blue) is stored in 2 last levels. The entire tree is used, no overhead.

3.3 Storing the points

At each inner node we save the quantized value of the splitting plane
in one direction (X,Y or Z). If the same data is stored at the leaf
level some information is lost. This is caused by the construction
of the tree: since it takes 3 depth levels to update one coordinate
component (see §3.2), two siblings differ only in the splitting plane
coordinate component. This results in very large errors especially
at the leaf nodes, since 4 leaf sibling will have the same X, Y or
Z coordinate (see figure 2(a)). We work around these artifacts by
storing each splitting plane’s (X, Y and Z) quantized value in the
leaf nodes.

If the point data is stored at each (leaf and inner) node of the tree,
as Jensen proposed [14], the variation on the quantization error be-
tween points in the top and in the leaf nodes will be very high, lead-
ing to very large variations in quantization error. We therefore let
the leaf nodes represent the actual input points, because the quanti-
zation error is the smallest in the deepest nodes of the kd-tree.

If all N points are stored exclusively in the leaf level of the tree,
a kd-tree with at least 2i leaf nodes is needed, where 2i−1 < N ≤ 2i.
This kd-tree has i depth levels resulting in Ntot = 2i +2i −1 nodes.
In a worst case situation, see figure 2(b)(upper), where N = 2i +1,
only half of the tree is used, but the entire tree is needed to use the
heap properties of the kd-tree. A best case situation only occurs
when N is a power of two, because then the efficiency of the tree is
maximized. Clearly, when working with very large point sets it is
unreasonable to expect this condition to be fulfilled.

Therefore, we do not store the points exclusively in the leaf
level. Instead, we store as many points N′ as possible in the sec-

ond last level, where N′ = 2k with 2k ≤ N′ < 2k +1. The remainder
R = N −N′ is stored in a left balance way in the next level, see
figure 2(b)(lower). Due to this construction R is always as small

as possible R < 2k. The tree needs Ntot = 2k + 1 + R nodes which
is equal to or better than the best case situation from the previous
method. This left-balanced kd-tree always uses its full capacity,
since all nodes are occupied. This way we have a very small varia-
tion in quantization error, at a reasonable cost.

3.4 Decoding and Querying the Quantized kd-tree

To decode a single point P, we start at the root of the tree which out-
lines the bounding box of all points. This is also the initial represen-
tation for P. We refine P’s representation by dividing the bounding
box using its quantized splitting plane every time we go one level
deeper in the tree, see figure 3. The traditional ray-tree traversal
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Figure 3: Illustration of the decoding process in 1D. Let us consider
a single point P with position xP. The actual position xP will be
derived from the quantized median split positions in the tree, which
define intervals where P resides (i.e., the extent of the kd-tree cell,
indicated in gray). As we go down the tree, this interval gets refined
by splitting the kd-tree nodes recursively. In the figure, median points
that define the split are shaded in dark, while the stored quantized
median position is depicted with a bold line. At the leaf level, the split
plane position within the current interval defines the final position xP

using the bounds of the corresponding interval.

and k-nearest neighbor spatial queries use the same traversal strat-
egy, which makes this decoding scheme suitable for ray tracing.

Due to the introduced quantization (see 3.2) the exact splitting
plane position of a node is lost. During ray-tree traversal and spa-
tial querying this quantization uncertainty introduces some prob-
lems. It is unclear which child will contain the query point if this
is positioned near the real splitting plane, since the data is classi-
fied according to the real median point. To account for this, we do
not split the bounding box at the quantized value, but let the two
bounding boxes of the children overlap with one quantization step,
as shown in Figure 1(b). Consequently, each quantized kd-tree in-
ner node can, in contrast with the classical two region division, be
classified into 3 regions: left, overlap and right. However, an inner
node still has two children.

Letting sibling kd-tree cells overlap is a conservative approach to
maintain a consistent spatial data structure. In the same spirit, Ma-
hovsky and Wyvill [20] quantize the vertices an axis-aligned bound-
ing box, such that the quantized version encloses the original. The
overlap incurs a performance penalty, since the elements contained
within the enlarged cell will have a higher chance of becoming can-
didates in an intersection test or spatial query. In section 3.6 we will
discuss a variable quantization scheme that alleviates this penalty.

The kd-tree in our implementation serves 2 purposes. First of all,
we use it to compute an estimate of the nearest ray-surface intersec-
tion point. Second, given this estimate, a spatial query is performed
on the kd-tree in order to fetch a local neighborhood of points for
the purpose of reconstructing the surface (see section 4).

Ray-Tree Traversal Standard kd-trees are well known accel-
eration structures for ray tracing. A typical kd-tree traversal al-
gorithm for ray tracing can be found in Wald’s thesis [29, chapter
7.2.2]. The algorithm takes as input a tree and a ray and recursively
searches for the nearest primitive in the tree that is intersected by
the ray. If the ray only hits the left or right region of the current
inner node we can cull the subtree on the other side, and immedi-
ately proceed to the “touched” child. Our version of the algorithm
is slightly different since we have to deal with three regions. If the
ray hits the overlap region both children need to be processed.

Spatial Queries Another benefit of standard kd-trees is their
ability to perform fast spatial queries, such as k-nearest neighbor

queries. Since we want to perform spatial queries directly on the
compressed data, we provide a way to execute k-nearest neigh-
bor queries on the quantized kd-tree. The main idea is the same
as in a regular k-nearest neighbor search on a kd-tree [7]. How-
ever there is one caveat. In the standard kd-tree k-nearest neigh-
bor query for a point p, resulting in a set of k points K, it is al-
ways possible to skip one of the child nodes for examination if
dist(p,splittingplane) > M with M = maxdist(p, pi) for i : 1..k
where p1..pk ∈ K. This means that the child node that does not
contain the point p may be skipped if it is far enough away. In our
case, we can not skip a child if p lies in or near the overlapping
zone.

3.5 Precision

Let us analyze the precision of stored points in a 1D Quantized
kd-tree. For simplicity, assume that the point cloud is uniformly
distributed. At each new level, the quantization error will decrease

by a factor of 1 at worst (i.e., no improvement) and a factor of 1
D

at best (see figure 1). On average, the error thus drops by a fac-

tor of α = D+1
2D each level. Note that 1

2 < α < 1. We eventually

get a quantization step width (or precision) of αL ×W , where L is
the number of levels in the tree and W is the width of the scene’s
bounding box. In 3D, L should be divided by 3, as a coordinate
(e.g. X) is “refined” every 3 levels in a kd-tree.

Similar to Botsch et al.’s octree coding scheme [8], the precision
depends on the number of levels in the tree. In their case, preci-

sion is increased faster, at a rate proportional to 1
2

L
, as opposed to

α
L
3 . However, it is important to see that the quantization step width

still decreases exponentially in our case, and therefore we get fairly
good reconstruction, especially for large models.

3.6 Variable Quantization

Aggressive quantization has the advantage of yielding a high com-
pression ratio, yet comes with a severe cost. First of all the intro-
duced quantization error is rather high (e.g. 41.6 dB Peak Signal
to Noise Ratio (PSNR) for David 28 M point model q = 2 ). Sec-
ondly, since the overlap regions higher up in the tree are big, there
is a high probability that the overlap region is hit and both large
subtrees need to be processed. This overhead results in slower tree
traversal and spatial querying(see 3.4).

We use a constant bitstring size per depth level, such that child
nodes can still be addressed implicitly without pointers. All men-
tioned problems can be solved by simply increasing the accuracy
of the first dm depth levels, using more bits. This barely affects the
compression ratio since the last dtotal −dm depth levels, which still
use a small bitstring, represent the largest part of the total data. We
experimented with a simple heuristic to alter the bitstring length per
level. We use 8 (or more) bits for the first ±80% of the levels, and
q bits or less for the remaining levels. In table 1 one can see how
the variable method outperforms the fixed one regarding the PSNR
and the tree traversal and k-nearest neighbor querying overhead but
still achieves good compression ratios. The q in table 1 only points
to the fixed method. For each fixed method entry in the table we
also provide a variable method entry with comparable compression
ratio.

4 RAY TRACING POINT SAMPLED MODELS

In this section we give an example of how the quantized kd-tree
can be used in the context of ray tracing large point clouds. The
ray tracing algorithm we use is inspired by Wald and Seidel’s kd-
tree-based technique [32]. The main difference with their approach
is that we fetch local k-neighborhoods on-the-fly, while Wald and



Seidel precompute and store them in the tree (albeit a significantly
higher memory cost).

Due to the surface model, per-point normals should also be
stored alongside the positions in order to compute the intersection
and shading. We use simple quantization based on Rusinkiewicz
et al. [26] to compactly store them, at a cost of 12 bits per normal.
However there are other, more computational expensive, ray surface
intersection algorithms which do not need this normal information
[2, 4].

We also describe an extension that allows for ray tracing with
LOD using the Quantized kd-tree.

Surface Model The surface is represented implicitly by a
signed distance function φ ; the corresponding surface normals are
defined by φ ’s normalized gradient. Shen et al. [28] proposed to
construct φ by local blending of signed distance functions of the
plane defined by a point and its normal.

φ(x) =
∑i w(‖x− xi‖)(x− xi)ni

∑i w(‖x− xi‖)
(1)

where xi and ni define the positions and normals of the point set
surface, respectively. To allow an efficient computation of Equa-
tion 1, only points in the local neighborhood of x are considered
significant. The interpolation function w is therefore chosen to
be monotonically decreasing and compact. We choose a Gaussian
weighting function similar to Kolluri et al. [16]:

w(r) = e
− r2

2σ2 (2)

Similar reconstruction methods are used by other authors [4, 1,
32].

Intersection Determination Let a ray R with anchor point
Rorigin and direction Rdir be parameterized as r(t) = Rorigin + tRdir.
Determining intersections boils down to tracking the nearest posi-
tive root of f = φ ◦ r.

Root determination will consist of a global and a local step:
root isolation and root refinement respectively [13]. The first step
bounds the domain of f to the interval around the first root. The
second step tracks the root in the interval.

We make use of our kd-tree scheme for the root isolation step, by
finding a candidate node that intersect the ray. The interval bound-
ing the near and far intersection of the node’s bounding box isolates
the root. We will locally reconstruct the signed distance function in
this node in order to find the root. To this end, the kd-tree is queried
to collect a local neighborhood of points, which will be used in
evaluating equation 1. Finally, Newton’s method [25] returns the
root of f = φ ◦ r.

4.1 Ray Tracing with LOD

When displaying large models (in the order of millions of points),
several points may map to a single pixel on the screen, causing dis-
tracting aliasing problems. Moreover, these points can also require
completely different data, this memory swapping/cache trashing
can be very expensive. A simple approach to avoid these problems,
is by using a multi-resolution representation (e.g. QSplat [26]).
Such a representation contains different versions of the same scene,
but re-sampled at different resolutions (e.g. from coarse to fine).
By selecting the resolution that matches the size of the pixel, alias-
ing is reduced significantly. As an additional advantage of multi-
resolution rendering, usually a smaller fraction of the dataset is ac-
cessed, yielding an improved performance.

The Quantized kd-tree implicitly represents the point cloud at
multiple resolutions. As mentioned before, the split plane offsets
can be used to reconstruct a position. By doing so higher up the hi-
erarchy, one obtains a multi-resolution representation. Although the

(a) (b) (c)

Figure 4: The St. Matthew model (187M points) compressed to 5.2
bpp. The red square is a close up of the dotted red square. (a)
is rendered using the multiresolution representation. (b) is rendered
without using the multiresolution representation. Aliasing artefacts
are visible in the magnified square. The rendering of (b) takes 9
times longer than (a). (c) is the visualization of the different levels
of detail used to render (a).

reconstructed positions at inner nodes are actually the median split
positions, rather than the average position of their children [26], for
the purpose of display they do a reasonable job. See figure 4 for
a demonstration. The only overhead that the multi-resolution rep-
resentation incurs, is that additional 12-bit normal lookups have to
be stored at the inner nodes. We can eliminate this overhead by
using an other surface reconstruction algorithm that computes the
normals on the fly as presented by Adamson et al. [2, 4].

5 RESULTS AND DISCUSSION

We will empirically measure the performance in terms of precision,
compression ratio and traversal/querying speed.

The reconstruction quality of our compression scheme is mea-
sured in Peak Signal to Noise Ratio, PSNR. This is an engineering
term for the ratio between the maximum possible power of a signal
and the power of corrupting noise that affects the fidelity of its rep-
resentation. Because many signals have a very wide dynamic range,
PSNR is usually expressed in terms of the logarithmic decibel scale.

To compare the overhead on the performance of the ray-tree tra-
versal and spatial querying caused by the compression we provide
in table 1 an entry of the uncompressed David model(consisting
of 28M points). The table provides besides timings also the aver-
age number of nodes visited during a tree traversal and a k-nearest
neighbor spatial query. As the table shows this introduced overhead
is almost negligible for the variable bitlength compression method.

Figure 5 gives an idea of the reconstruction quality 5(a) in func-
tion of compression ratio 5(b). Figure 6, shows the distribution of
errors across the point cloud. Each plot is a histogram where the X
axis represents the Real Mean Square Error (RMSE) and the Y axis
the propability this error occurred. One can see that the introduced
error is compact. Thus, no large variations on the error can occur.
Figure 7 shows corresponding renderings of the plotted error his-
tograms. One can see that the global reconstruction of the model
is excellent for all compression ratios. Only when sharp or edgy
features are magnified quantization errors become visible.

In table 2 we present our compression results for several differ-
ent models. For each model two results are presented, to show the
compression and reconstruction properties . For smaller models the
compression rate and reconstruction quality are not as competitive,
due to the shallow tree depth, but are nevertheless reasonable.

Note that the St Matthew model consists of 187M points and
is divided into 12 blocks. Some blocks contain more than 35M



David 28M bpp PSNR(dB) Comp. Rat. knn Nodes knn Overhead Tree Trav. Nodes Tree Trav. Overhead

Fixed: q = 1 3.5 4.8 25.8 33.5M (all) 1.8e5 33.5M(all) 4.0e4

Variable 3.6 42.4 25.4 26.6K 147 8K 9.64

Fixed: q = 2 7.19 41.6 12.9 21K 116 47K 56
Variable 5.6 62.8 16.3 256 1.42 880 1.06

Fixed: q = 3 8.6 58.8 10.7 2K 11.1 5021 6.05
Variable 8.6 69.4 10.7 213 1.18 878 1.06

Fixed: q = 4 14.3 69.8 6.4 505 2.8 1846 2.22
Variable 15.5 79.1 5.9 180 1.0 875 1.05

Uncompressed 96 inf 1 180 1.0 830 1.0

Table 1: Results of our approach on the David model. The table’s columns show the bits per point (bpp), PSNR, compression ratio (Comp.
Rat.), number of nodes visited during k-nearest neighbor (knn) querying, the overhead while performing a knn query due to the quantization
(1.0 = no overhead), number of nodes visited during Ray-Tree Traversal and the associated overhead. The rows show different configurations
of the quantization, including variable quantization.

(a) (b)

Figure 5: (a) PSNR plot for different input quantizations (b) Com-
pression Ratio for different input quantizations

Model #points TD bpp PSNR(dB) CR

St Matthew 38M(187M) 24 5.2 61.4 17.5
13.2 75.4 7.2

David 28M 24 5.6 62.8 16.3
15.5 79.1 5.9

Lucy 14M 23 5.3 60.4 17.2
12.2 73.2 7.5

Night 11M 23 5.6 62.4 16.3
13.7 76.1 7.0

Buddha 543K 19 4.8 43.5 19.3
14.6 57.5 6.3

Dragon 437K 18 4.6 43.9 20.0
15.5 57.4 5.9

Table 2: This table shows the compression and reconstruction prop-
erties for models with different size. TD: Quantized kd-tree depth,
bpp: bits per point, CR: compression ratio.

points. Due to our current un optimized implementation time and
memory considerations forced us to compress it one block at a time.
However, it would be better for the compression ratio to compress
St Matthew as one gigantic block of 187 M points, because more
points could reuse the same data structure.

We compared the rendering times of a compressed (890MB) and
uncompressed3 (3.6 GB) St Matthew model on a PC with 2GB
RAM memory. The uncompressed model required disk access dur-
ing rendering, leading to a decreased performance. On average the
rendering times dropped 2 to 4 times when compared with the com-
pressed one, see figure 8. Decreases up to 15 times were measured
when the camera was moved significantly.

Thanks to the compression we were able to visualize several

3The normals were in both cases compressed to 12 bits per normal

(a) (b)

(c) (d)

Figure 6: (a)(b)(c)(d) RMSE histograms of the 28M David model.
As the plot shows, the compression does not introduce large varia-
tions in the error.

models at the same time. Figure 9(a) shows the entire St Matthew
statue together with David and Lucy, the total scene consists of
229M points. In order to create a massive scene we loaded two
entire St Matthew statues, without instancing. The entire scene in
figure 9(b) consists of 374M points. These scenes were rendered in
10 seconds at 512x512 resolution on one dual processor PC.

As a proof of concept we compressed and ray traced several dif-
ferent large models. They are shown in figure 10. These models
differ in complexity and geometric structure.

6 CONCLUSION

We have presented a novel method to compress and display huge
point clouds in combination with ray tracing. Our compression
scheme based on a left balanced kd-tree, in order to avoid the cost
of storing pointers. Compactness is achieved by quantizing the split
plane positions. Our scheme is optimized for ray tracing point-
sampled surfaces, and the decoding of the points can be carried
out while traversing the tree. A valuable property of the Quan-
tized kd-Tree is that both the geometric data and the acceleration
data structure are compressed simultaneously. Our representation
affords local decoding, such that spatial queries can be performed



(a) (b) (c) (d)

Figure 10: (a) Night model (11M points) compressed to 5.6 bpp, PSNR 62.4dB, Comp. Rat. 16.4. The holes in this model are caused by the
incomplete scanning, not by the quantization(b) Lucy model (14M points) compressed to 12.2 bpp, PSNR 73.25dB, Comp. Rat. 7.5. (c) Close
up of St Matthew model (187M points) compressed to 5.2 bpp, PSNR 61.4dB, Comp. Rat. 17.5.(d) David model (28M points) compressed to
5.6 bpp, PSNR 62.8dB, Comp.Rat. 16.3.

( )d( )c

( )a ( )b

Figure 7: These figures are a visualization of the 28M David corre-
sponding to the error histograms shown in figure 6. One can see that
the global reconstruction is excellent, and the quantization artefacts
only occur when sharp features are magnified.(a) 5.6 bpp, PSNR:
62.8 dB (b) 8.6 bpp, PSNR: 69.4 dB (c) 15.5 bpp, PSNR: 79.1 dB
(d) Uncompressed model : ground truth 96 bpp, PSNR: inf

without decompressing the full dataset. In addition, it provides a
multiresolution representation of the point cloud, which improves
performance and image quality.

So far we have only considered only the compression of 3D po-
sitions. However, points may have other attributes such as colors
and normals. In future work we wish to tie in the compression of
these attributes with the positions stored in the Quantized kd-tree.
In addition, we would like to combine our representation with a par-
allelized ray tracing algorithm [29], in order to achieve interactive
performance.
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