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Abstract

Many video sequences consist of a locally dynamic background containing moving foreground subjects. In this

paper we propose a novel way of re-displaying these sequences, by giving the user control over a virtual camera

frame. Based on video mosaicing, we first compute a static high quality background panorama. After segmenting

and removing the foreground subjects from the original video, the remaining elements are merged into a dynamic

background panorama, which seamlessly extends the original video footage. We then re-display this augmented

video by warping and cropping the panorama. The virtual camera can have an enlarged field-of-view and a

controlled camera motion. Our technique is able to process videos with complex camera motions, reconstructing

high quality panoramas without parallax artefacts, visible seams or blurring, while retaining repetitive dynamic

elements.

Categories and Subject Descriptors (according to ACM CCS): I.2.10 [Artificial Intelligence]: Vision and Scene
Understanding - Texture, Video Analysis; I.4.3 [Image Processing and Computer Vision]: Enhancement -
Registration; I.4.8 [Image Processing and Computer Vision]: Scene Analysis - Time-varying imagery;

1. Introduction

Videos are becoming an increasingly popular means of
conveying information, and as a result the availability of
video editing tools is growing every day. The addition of
the temporal dimension to the spatial domain provides us
with a large new range of potential problems and pos-
sibilities. Aside from the natural extensions from image
editing, video sequences can be adjusted or improved in
other ways [BM03].

One example of such video augmentations is video sta-
bilization: the task of removing unintended and therefore
unwanted shaky motion from a video. This is commonly
achieved by computing and smoothing the motion path,
either by making global adjustments commonly using a
reference frame [LKK03] or by smoothing out local dis-
placements [MOTS05]. Either way, the stabilized video will
have gaps due to the warping of the original content. Instead
of simply cropping the result, mosaicing [LKK03] or motion
inpainting [MOTS05] can then be applied to fill in the
missing information.

Another class of applications deals with restructuring the
image or video dimensions, while preserving a maximum
amount of salient information. A recent example in the
image domain by Avadan et al. [AS07] allows for content-
aware image resizing using seam carving. A work more
closely related to our own, the video retargeting algorithm by
Liu et al. [LG06], aims at adapting videos to fit a new display
size. As this introduces virtual pans and cuts, their approach
is designed to minimize the loss of important information.

Our work will focus on a common type of video sequence,
in which the videographer shoots a scene by rotating the
camera to capture the entire panorama, possibly zooming
into areas of particular interest. Also typically, video se-
quences are focused on dynamic subjects, such as people
or animals. We wish to re-display and manipulate such
sequences in a meaningful way, presenting a technique that
gives the user control over the camera’s motion and field of
view. As we are usually interested in increasing our field of
view, our work can be seen as an inverse case of the video
retargetting algorithm of Liu et al. [LG06].
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Several assumptions are made. Most importantly, the
video should be recorded from approximately a single lo-
cation in the scene, i.e. the camera may only undergo a rota-
tional motion. Significant translation would introduce severe
parallax effects, which would require a more elaborate
scene analysis with full 3D information. However, as it is
practically impossible to avoid parallax, we compensate for
it in our technique. Our contributions to the field are twofold:
(i) the idea of editing a panning/rotating video sequence
using a full panoramic representation; (ii) a robust video
mosaicing algorithm that produces high quality panoramas
without parallax artefacts, seams or blurring, while retaining
repetitive dynamic elements.

2. Related Work

Our work is rooted in several subdomains of computer
graphics and computer vision. Video registration, texture
synthesis, and image & video completion are all related to
the work presented in this paper.

2.1. Video Registration

The task of properly aligning partially overlapping images
captured by a camera is commonly referred to as video
registration. In case the camera follows a motion pattern
more sophisticated than the common monodimensional pan-
ning sequence, extra measures need to be taken to assure
that all available information is exploited. This information
usually comes in the shape of an approximation of the frame
topology. Generally some form of global optimization is
utilized to ensure an overall consistent registration.

In the last decade, many approaches to global regis-
tration have been proposed. We will restrict ourselves to
those most closely related to our own work, those that
let topological information guide the registration process.
A graph representation is commonly used to depict the
topology, casting the problem as the identification of the
shortest path [KCM00, MFM04, SHK98]. We opted for an
alternative graph-based approach: instead of weighing the
edges with some confidence measure of choice, our algo-
rithm is designed to minimize the number of intermediary
nodes between each frame and the reference frame. This
is based on the notion that we do not necessarily need
to know how good every single edge in the graph is,
only that they are good enough. Our approach is aimed at
reducing computation time, trying to minimize the number
of homography computations.

2.2. Image/Video Completion & Texture Synthesis

Image completion poses the problem of filling in missing
pixels in large unknown regions of an image in a visually
consistent way. This is very similar to the objective of texture
synthesis, in which a large area of texture information needs
to be generated, based on the limited intensity information
available in a smaller sample.

Historically, exemplar-based techniques have proven to be
the most successful in dealing with this problem, copying
pixels or source patches from the observed part of the image
[EL99,CPT03,DCOY03,KEBK05]. The common drawback
to these approaches is their greedy approach to filling the
image, which can often lead to visual inconsistencies. Initial
attempts to avoid this problem have taken a more global ap-
proach, using Expectation Maximization (EM)-like schemes
for optimizing the process [KSE∗03,WSI04]. However, EM
is known to be particularly sensitive to initialization and can
get trapped in poor local minima. Other recent approaches
have applied dynamic programming or belief propagation
[YFW01] to reach a more globally consistent image. Most
of these algorithms guide the completion process by influ-
encing the order by which the synthesis proceeds. This can
either be done manually by user assistance, e.g. Jian Sun
et al. [SYJS05] give priority to user-specified curves on
which the most salient missing structures reside, or it can
be deduced by the algorithm itself [KT06].

Recently some authors have extended the application
range of their image completion and texture synthesis algo-
rithms to the video domain. In one related work, Agarwala
et al. [AZP∗05] constructed ‘panoramic video textures’.
Starting from a video segment filmed by panning a camera
across a dynamic scene, they combine looping segments of
a constant duration in order to construct a single panoramic
video texture. Even though this work naturally relates to
dynamic panoramic backgrounds, there are several issues
that prevent us from applying this technique to our situation.
Our augmented video has a predetermined finite duration,
and contains pixel intensities that should remain unchanged
to preserve the original content. We cannot discard pixels
from the input sequence to create a better fit for the required
constant looping time. Finally, while we would like to use
arbitrary input videos, their method is restricted to horizontal
panning sequences.

2.3. Background Estimation

The problem of estimating a consistent background is com-
monly addressed by applying a temporal mean or median
filter to the video at pixel level. However, in case of station-
ary occlusors that persist for more than half the sequence
length, or when dealing with the presence of parallax effects,
these simple approaches fail. Spatial support is required as
an additional cue to improve pixel-level algorithms.

The work most closely related to our own is that of
Columbari et al. [CFM06]. They present a region growing
algorithm, which starts from patches that are always visible
in the scene, gradually forming a consistent background.
This approach shows similarities to the early examplar-based
image completion algorithms, and potentialy inherits their
common drawback: its greedy approach can lead to visual
inconsistencies when two regions come together. While we
use similar cues to guide our background synthesis, our
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algorithm poses background estimation as an optimization
problem with a well defined energy function. Our formula-
tion also allows for sharper patches to be chosen over their
blurred counterparts, reducing (if not completely removing)
parallax effects if the intensity information is available in the
original video.

3. Overview

Our video augmentation pipeline consists of five different
processing steps. In the first of these steps, we properly warp
and align all input images in a common reference frame.
Using the result of this video registration step, we proceed
on computing a globally consistent static background, con-
taining sharp details and free of parallax artefacts. This back-
ground is used to make a distinction between the dynamic
foreground elements (actors) and the static or dynamic
background elements (repetitive/quasi-repetitive motions, or
complex stochastic phenomena with an overall stationary
structure). When the background elements are identified, the
warped input video is extended with a dynamic background
panorama. Finally, this dynamic background panorama is
warped back to the original video, and modified according
to the user-controlled virtual camera.

4. Our Approach

4.1. Notation

Two images of the same scene are related by a non-singular
linear transformation of the projective plane in two cases:
(a) if the scene is planar or (b) if the center of projection
does not change, i.e. the only degrees of freedom are due to
the orientation of the camera. In these cases we do not suffer
from the effects of parallax, and the images can be composed
together to form a mosaic.

Image points are represented by their homogeneous co-
ordinates x̃ = (x,y,w), with x = ( x

w , y
w ) being the corre-

sponding Cartesian coordinates. A linear transformation of
the projective plane, called a homography, is represented by
a 3 × 3 matrix H when x̃ j = Hi, jx̃i, where x̃i and x̃ j are
corresponding points in frames i and j respectively.

4.2. Video Registration

Our video registration pipeline is essentially a two-step pro-
cess, with an optional bundle adjustement step. During the
initial estimation step, we have no knowledge of the frame
topology (the relative spatial positioning of the frames), so
we rely on temporal information only. Using the results of
this initial estimation, we subsequently take a graph-based
approach, using the newly acquired spatial information.
Finally, we can employ an optional bundle adjustment step.

Figure 1: (TiA): a sliding window of potential homography

candidates is checked instead of only linking consecutive

frames. (boxes: frames, edges: computed homographies with

sufficient inlier support, black/green: neighbors/short-cuts)

Figure 2: (TdA, step 0): using topoligy information, all

potential candidates for direct linking to the reference frame

are computed. Those with sufficient support are added to the

graph.

4.2.1. Homography Computation

Feature detection and matching is done by employing the
Kanade-Lucas-Tomasi tracker [LK81, TK91]. After proper
normalization of the found correspondences [Har97], we
employ a RANSAC-based [FB81] algorithm to compute
homographies, using minimal sample sizes [BHN07]. When
the RANSAC procedure has computed an initial homog-
raphy and a matching set of initial inliers, we employ the
method proposed by Kanatani et al. [iKO99]. This method
is based on a statistical renormalization technique, and
determines a statistically optimal homography. This non-
linear estimation is repeated until a stable amount of inliers
is achieved.

4.2.2. Topology-independent Alignment (TiA)

As a common first step in many graph-based registra-
tion algorithms, the inter-frame homographies between all
neighboring frames are calculated. In order to establish an
initial guess of the frame topology, we could recursively
concatenate the homographies from each frame to a chosen
reference frame.






Hr,r = I

Hi,r = Hi+1,rHi,i+1 if i < r

Hi,r = Hi−1,rHi,i−1 if i > r

(1)

These homographies are commonly computed from one
frame of the input sequence to the next. However, for
the purpose of image mosaicing, our experiments have
indicated that computing these homographies on pre-warped
images (using the target frame’s homography as the warping
function) results in more accurate estimates. The reasoning
behind this is that the pixel-error is measured in the coordi-
nate space of the final panorama directly.

Due to the recursive nature of the computation process, es-
timation errors will propagate down the homography chain.
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A grove misalignment would immediately break the chain.
Therefore, we propose a slightly different scheme, in which
we use a sliding window of potential homography candidates
instead of simply linking consecutive frames (fig.1). As we
have mentioned before, when we compute a homography we
require the target frame’s warping function to be known.
As such, we keep track of the frames that are already
linked to the reference frame, and label them as committed.
Starting from the reference frame, we try to connect adjacent
uncommitted frames to committed frames. Initially, only the
reference frame itself is labeled as committed, as it is the
only one whose warping function to the reference mosaic is
already known. For each uncommited frame i, we attempt
to compute the homography Hi, j to each commited node
j ∈ [i−d, i+d], starting with the closest neighbors. As soon
as we find a homography with a confidence value above
a predefined threshold, it is stored and the source frame
is labeled as committed. We repeat this procedure until no
more uncommitted frames remain.

There are two possible reasons why no more frames are
committed: (a) either all the frames have a parent frame
(a frame through which they are linked to the reference
frame) and an associated homography to this frame, or (b)
for each of the uncommitted frames i, no potential candidate
j within the given window size has been found. In the
latter case, we use the previously stored confidence values
to find the homography with the highest confidence, add the
source frame to the list of committed frames, and resume the
previous procedure.

This produces a homography tree with constraints on the
confidence values associated between the different nodes.
Unfortunately, considering the depth of the tree, the prop-
agated estimation errorss will still result in a considerable
misalignement at the end of the sequence. However, we now
have a first estimate of the frame topology in the reference
mosaic, which we can use to provide us with a more accurate
registration algorithm.

4.2.3. Topology-dependent Alignment (TdA)

In this stage the homography tree that resulted from the
previous stage will be transformed into a new instance,
taking into account the estimated topology information.

As we have stated before, our algorithm is designed to
minimize the number of intermediary nodes between each
frame and the reference frame, based on the notion that we
do not necessarily need to know how good every single edge
in the graph is, only that that they are good enough (fig.2).
If we can guarantee a minimum level of confidence, the
results will be usable for future computations. During our
experiments, we have used the number of correspondences
within predefined error bounds as our confidence metric of
choice. We provide an outline of our algorithm in alg.1.

Note the similarities with the previous stage: we utilize

Algorithm 1 Topology-dependent Alignment

1. U := {i | i 6= r}; % unconnected frames (6= reference frame)
2. C := {r}; % previously connected frames
3. N := ∅; % newly connected frames
4. while U 6= ∅

a. ∀i ∈ U :

i. Sort j ∈ C, according to ‖i− j‖, closest first;
ii. Find first j ∈ C, where #inliers(Hi, j) ≥ threshold

iii. If j found: N = N ∪{i} ∧ U = U −{i}

b.

{
ifN 6= ∅ : C = N
else : C = {k | argmax(#inliers(Hk, j)),k ∈ U , j /∈ U}

5. end while

a confidence threshold to decide if we add the child node i

of the homography Hi, j to the set of connected (committed)
frames. Also, once a node is connected to the rest of the
graph, its warping function is known. This way, we can
always use pre-warped images to perform the homography
estimation.

In principle, when iterating through the set of uncon-
nected frames U , we could compute the homography be-
tween each pair (i, j)∈U×C to look for new additions to the
graph. Homography computation however is an expensive
operation, and should be avoided if a lack of inlier support
is expected beforehand. Therefore, we will only consider
frames with a significant degree of overlap as potential
candidates for addition.

We use the available topology information to reduce
the search space of potential edge candidates: in order to
establish the degree of overlap, homographies Hi,r from
the topology-independent alignment step are used as an ap-
proximation to the true registration matrices. As an overlap
measure, we use the normalized distance between centroids:

δi j =
max(0, |ci − c j|− |di − d j|/2)

min(di,d j)
(2)

where ci, c j, di and d j are the centroids and the diameter of
the projection onto the mosaic of frames i and j, respectively.

4.2.4. Bundle Adjustement

As a final step we apply the bundle adjustment step proposed
by Marzotto et al. [MFM04], which finds the solution {Hi}
that minimizes the total misalignment of a predefined set of
m grid points on the mosaic. Let xk be a grid-point and let
Ek be the set of edges (i, j) ∈ E so that xk belongs to the
overlap region between frame i and frame j. The error at the
grid-point xk is defined as:

Ek =
1

|Ek|
∑

(i, j)∈Ek

∥∥∥xk −π
(

Hi,rHi, jH
−1
j,r x̃k

)∥∥∥
2

(3)

where π transforms homogeneous coordinates into Cartesian
(pixel) coordinates.
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Figure 3: (left) An example of a warped input frame, and

the associated binary mask. (right) Background Estimation

MRF: a 2D grid of nodes (green), with label patches in the

temporal dimension (red). Every pair of connected nodes

represents overlapping image patches (purple).

Since we want to minimize the error at all grid points
simultaneously, we end up with a system of non-linear
equations that can be cast as a least-squares problem.

min
{Hi,r}

m

∑
k=1

E
2
k (4)

The Levenberg-Marquardt algorithm is used to solve Eq. (4),
using the previous set of {Hi,r} as the starting solution. Data
standardization is carried out to improve the conditioning of
the problem [Har97].

4.3. Static Background Estimation

After we have properly registered all frames, the next step
in our pipeline consists of computing a consistent static
background. In an ideal situation, registration would be
perfect and every background pixel would be visible for a
sufficient period of time. Unfortunately, real-world footage
is rarely this perfect, and as a result we will have to deal with
the effects of motion blur and parallax. For good measure,
we will also be dealing with the possibility of actors that
stay in a single place for a significant period of time, only
exposing the true background for a few seconds.

As we have stated before, our background estimation
algorithm shows some similarities to the region growing
algorithm of Columbari et al. [CFM06]. However, unlike the
greedy approach taken in their work, we have opted to pose
the background estimation as a discrete global optimization
problem.

4.3.1. Problem Statement

Given a set of warped input images Ii and their binary masks
Bi (fig.3), the goal of our algorithm is to compute a visually
plausible background by merging spatially consistent, but
temporally varying patches into a consistent background
image. To this end, we propose the use of a discrete Markov
Random Field (MRF).

The nodes N of the MRF are defined by placing an
image lattice over the total space occupied by the mosaic,
with a horizontal and vertical spacing of stepx and stepy

respectively. Each node is uniquely defined by their (x,y)
coordinate on the mosaic, and the edges E of the MRF are
defined by looking at the 4-neighborhood of each individual
node. The total label set L consists of all possible w × h

patches around every node ni ∈ N . Thus, the labels l ∈ L
are uniquely defined by the spatial coordinates (x,y) of their
center pixel, and their frame number t ∈ [1,N]. Note that
stepx and stepy are set so that a region of overlap between
neighboring patches of size w×h always exists. Every node
ni(xi,yi)∈N has a maximum of N possible label candidates
l(xl ,yl, t) where (xl ,yl) = (xi,yi). Also, a label (x,y, t) will
only be considered a valid background candidate if the full
patch window W = [x− w

2 ,x+ w
2 ]× [y− h

2 ,y+ h
2 ] is marked

in the binary mask Bt (fig.3), or if it is only partially marked
but located on the border of the mosaic.

The single node potential Vi(l) for placing label l over
node ni will describe the likelihood of patch l being part of
the background. This likelihood can be expressed in terms
of the number of frames in which the patch is visible during
the entire sequence. However, a single patch has no inherent
information about the duration of its visibility, so we are
required to perform an a priori clustering step. As in the
work of Columbari et al. [CFM06], we apply single linkage
agglomerative clustering [JMF99] to group our labels lt into
clusters Ct ⊂Li. Every cluster Ct will be defined by choosing
one of its labels lt as the primary label, and each node will be
assigned a set of clusters instead of a set of individual labels.
Based on the size of these clusters, we can now define our
single node potentials as:

Vi(C) = α

[
1−

(
|C|

N

)2
]

(5)

Lastly, the pairwise potential Vi j(C,C′) will measure how
well these clusters agree on their region of overlap. We
will define the pairwise potential by the sum of squared
differences (SSD) of the mean labels from the respective
clusters in this area of overlap A, divided by the amount of
overlap pixels |A|:

Vi j(C,C′) = β

[
1

|A| ∑
(x,y)∈A

(
Ī(x,y)−Ī′(x,y)

)2

]
(6)

Based on this formulation, where α and β are user-
specified weights, our goal will now be to assign a cluster
Ĉi ⊂L to each node ni, so that the total energy cost E({Ĉi})
of the MRF is minimized, where:

E({Ĉi}) =
|N |

∑
i=1

Vi(Ĉi)+ ∑
(i, j)∈E

Vi j(Ĉi, Ĉ j) (7)

c© 2008 The Author(s)

Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



Hermans et al. / Augmented Panoramic Video

Figure 4: We use the median of absolute deviations to:

(a) segment out foreground elements, and (b) classify

background regions as static or dynamic (see labels)).

4.3.2. Energy Minimization by Belief Propagation

As an advantage of formulating background estimation as
an energy minimization problem, we can now apply belief
propagation to our energy function.

Belief propagation (BP) is an iterative inference algorithm
that works by propagating local messages along the nodes
of an MRF [YFW01]. Messages sent from node ni to n j

form a set {mi j(l)}l∈L, where element mi j(l) indicates
how likely node ni thinks that node n j should be assigned
label l. Furthermore, messages are updated (i.e. sent) until
convergence as follows:

mi j(l) = min
li∈L

{Vi(li)+Vi j(li, l j)+ ∑
k:k 6= j,(k,i)∈E

mki(li)} (8)

This update rule is associated with the min-sum version of
BP, where the potentials are described in the -log domain.
After convergence, a set of beliefs {bi(l)}l∈L is computed
for each node, where belief bi(l) is defined as follows:

bi(l) = −Vi(l)− ∑
k:(k,i)∈E

mki(l) (9)

These beliefs approximate the max-marginal of the posterior
at node ni, and thus describes the likelihood that the label
l should be assigned to that node. Based on this fact, a
node is then assigned the label with the maximum belief, i.e.
l̂i = argmaxl∈L bi(l). It is known that, for tree structured
graphs, BP will always converge to the optimal solution,
while for graphs with loops, it can only guarantee to find
a local optimum.

4.3.3. Dual-step Energy Minimization

In order to reduce the computational time of our algorithm,
we have opted to perform our background estimation in two
seperate steps. During the initial step, we will try to assign a

cluster Ĉi ⊂ L to each node ni, minimizing the total energy
cost E({Ĉi}) of the MRF (eq.7). Here, the clusters take the
role of labels in the BP algorithm.

In a subsequential step, we will unpack these clusters and
assign a label l̂i ∈ Ĉi to each node ni, minimizing another
energy cost E({l̂i}) associated with individual labels rather
than clusters:

E({l̂i}) =
|N |

∑
i=1

Vi(l̂i)+ ∑
(i, j)∈E

Vi j(l̂i, l̂ j) (10)

The single node potential function Vi(l) of label l estimates
the level of blur of the corresponding window W:

Vi(l) = −
1

|W| ∑
(x,y)∈W

(
I(x,y)−Ī(W)

)2
(11)

where Ī(W) symbolizes the mean of window W . By defin-
ing this single node potential, we encourage the use of
the sharper labels in each cluster over their more blurry
counterparts. The pairwise potential Vi j(l, l′) computes the
SSD of the labels in their respective area of overlap A,
divided by its size |A|.

Choosing this two-step approach over a single minimiza-
tion step decreases computation times due to the reduced
number of labels in each step. In addition, it will also
increase the robustness of the algorithm, as false positives
are most likely to have been removed from the label set after
the clustering step.

4.4. Foreground Segmentation

The purpose of the foreground segmentation component is
to identify the actors (dynamic foreground elements) in our
scene. For every warped input frame we need to decide
which pixels belong to the (static or dynamic) background
and which pixels belong to the foreground.

To do this, we use a classifier that is based on the
X84 outlier rejection rule [HRRS86]. Every pixel of each
warped frame is compared with its associated pixel in
the static background image calculated in section 4.3. To
make a robust classification based on the difference between
these pixel values, we incorporate the median of absolute
deviations (MAD) into the computations (fig.4a). The MAD
is a statistical measure that is commonly used to describe the
variability of data with outliers.

MAD(x,y) = medi{|Ii(x,y)− bg(x,y)|} (12)

An input pixel (x,y) belongs to a foreground element if

|Ii(x,y)− bg(x,y)|

MAD(x,y)2
> χ−1

3 (α) (13)

where χ−1
3 (α) is the inverse-chi-square distribution with

3 degrees of freedom and a confidence value of α. The
resulting segmentation images Si are cleaned up by using
standard morphological filtering operations.
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Figure 5: Dynamic Background Potentials: for boundary

node ni its single node potential Vi(l) will be an SSD over

the yellow region, while for nodes np, nq their pairwise

potential Vpq(l, l′) will be an SSD over the green region.

Non-boundary node n j has zero single node potential.

4.5. Dynamic Background Estimation

Our process of creating dynamic background content is
structured in a fashion similar to our background generation
component.

4.5.1. Single-step Energy Minimization

Given a set of warped input images Ii, their binary masks Bi

and a foreground/background segmentation Si, the goal of
this component is to compute a visually plausible panoramic
video by merging spatially consistent, but temporally vary-
ing patches into a consistent video panorama. To this end,
we propose the use of a new MRF, expanding our static
background estimation MRF into the temporal dimension.

The nodes N are once again defined by placing an image
lattice over the total space occupied by the mosaic, adding a
temporal dimension t. Each node is thus uniquely defined
by its (x,y, t) coordinates, and the edges E are defined
by looking at the 6-neighborhood of each individual node.
The label set L is a subset of the one we used for static
background estimation. We remove the labels containing
the foreground object (encoded in the segmentation images
S), which leaves us with both the static and dynamic
background labels.

Nodes ni located on the border of a warped input image
will already contain some initial content. Therefore, any
label l̂i assigned to these nodes should retain as much
intensity information present as possible. As such, the single
node potential Vi(l) of assigning label l to node ni represents
how well the intensity information of label l agrees with the
intensities present in the window W around the center of
node ni (fig.5):

Vi(lt) = α

[
1

|W| ∑
(x,y)∈W

Bi(x,y) (Ii(x,y)−It(x,y))2

]

(14)

Lastly, the pairwise potential Vi j(l, l′) must be defined
in a way that provides us with both spatial and temporal

consistency. In case nodes i and j are spatial neighbors, the
pairwise potential is defined by the normalized SSD over the
area of overlap A:

V
S
i j(l, l

′) = β

[
1

|A| ∑
(x,y)∈A

(
I(x,y)−I′(x,y)

)2

]
(15)

When dealing with temporal neighbors, we want to encour-
age temporal continuity for dynamic elements. However,
not all dynamic background movement is caused by actual
scene movement, as some of it originates from parallax
artefacts. Because incorporating this unwanted movement in
our results leads to visual artefacts, we need to subdivide the
label set L into a subset of static (LS) and dynamic labels
(LD). This subdivision is based on thresholding, using the
MAD values calculated in the foreground segmentation step.

κ(l) =

(
1

|Wl |
∑

(x,y)∈Wl

MAD(x,y)

)2

(16)

If κ(l) exceeds a predefined threshold, label l will be
considered dynamic (see fig.4b).

Depending on which subset two labels l and l′ are in,
temporal costs are chosen to either encourage temporal con-
tinuity (for the dynamic elements), or to increase temporal
coherence (for the static elements). In the first case, we will
assign a penalty to subsequential labels in the output video
that are not subsequential in the original sequence:

V
T D
i j (l, l

′) = γ if
[
t(ni)− t(n j)

]
6=
[
t(l)− t(l′)

]
(17)

In case of static background elements, the pairwise potential
is defined by the normalized SSD over their common spatial
window W:

V
T S
i j (l, l

′) = λ

[
1

|W| ∑
(x,y)∈W

(
I(x,y)−I′(x,y)

)2

]
(18)

Based on these formulations, where α, β, γ and λ are user-
specified weights and t(l) returns the label’s frame number,
a label l̂i ∈ L should be assigned to each node ni, so that the
total energy cost E({l̂i}) of the MRF is minimized, where:

E({l̂i}) =
|N |

∑
i=1

Vi(l̂i)+ ∑
(i, j)∈E

[
V

S
i j(l̂i, l̂ j)+V

T∗

i j (l̂i, l̂ j)
]

(19)

4.6. Visualization

In the end, the goal of our system is to re-dispay video
sequences with a controlled camera motion, field of view
and zoom.

4.6.1. Camera motion

Warping the dynamic video panorama back to the coordinate
system of the original input footage can be done by simply
applying the inverse of the homographies {Hr,i} = {H−1

i,r },
computed during the registration step, to each respective
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frame of the dynamic panorama. If we want to control the
rotational motion performed by the virtual camera, we first
need to recover the original camera motion. To achieve
this, we will need to calibrate the camera, seperating the
intrinsic and extrinsic camera parameters. Assuming that
not all rotations are about the same axis, we can linearly
decompose the homographies Hr,i as described by Agapito
et al. [AHH99]:

Hr,i = KiRr,iK
−1
r (20)

Pre-multiplying or replacing rotation matrix Rr,i with a user-
controlled rotation R’ will allow direct access to the virtual
camera.

H’r,i = KiR’Rr,iK
−1
r (21)

Also, as we know the translations of all pixels for each
pair of neighboring frames, we have the option of adding
blur to pixels that were not part of the original input video.
This can easily be achieved by convoluting the selected
pixels with an appropriate kernel.

4.6.2. Field of View

Besides the ability to control camera motion, we also allow
the user to adjust the field of view. This brings up several
complications: (a) by expanding the field of view, empty
parts of the panorama can become visible when the camera
reaches the edge of the panorama, and (b) when the rota-
tion of virtual camera is adjusted, parts of the foreground
element(s) may no longer be visible. To cope with these
situations, we iteratively adjust the rotation R’ and if needed
the focal length of Ki. During this computation, we treat
the absence of gaps in our output frame as a hard, and the
visibilty of the actors as a soft constraint.

5. Results

We have applied our algorithm to a variety of input se-
quences, chosen specifically to test individual components
of our algorithm. For example, in order to test our regis-
tration algorithm, a skateboarding sequence with recurring
loops in the frame topology was computed. Our waterfall
scene contains both structured (miniature water wheel) and
unstructured (waterfall) dynamic background elements.

In general, the augmentation of the original video se-
quences generates convincing results (depicted in fig.7).
Careful examination however will reveal occasional arte-
facts, in the form of ‘popping’ effects. These artefacts are
usually the product of aperiodic background elements, or
background elements without a full visible cycle, labeled
as dynamic background. Their temporal continuity ends
abruptly, resulting in the popping artefact.

Figure 6: Comparison of (a) temporal mean filtering,

(b) temporal median filtering, and (c) our background

estimation algorithm.

5.1. Discussion

The automatic registration of the video frames consistently
provides us with accurate results, unless the underlying
inter-frame warping procedure breaks down. This happens in
two cases: (a) when comparing a severely blurred image with
an undistorted one, and (b) when dealing with stochastic
dynamic regions filling nearly the entire input image. We
will look into the recent work of Yuan et al. [YSQS07] to
deal with the first issue, but we are unaware of any methods
that can deal with the second.

Our static background estimation component produces
high-quality static panoramas, under the assumptions that
parallax effects stay within reasonable bounds and that all
sharp background pixels are visible at least once within
the entire sequence. A comparison of our technique to
standard background subtraction methods is shown in fig.6.
It should be noted that this stage can be used as a stand-alone
application for background estimation in cluttered scenes.

Our dynamic background estimation component gener-
ates convincing results, with the exception of the popping
artefacts which we mentioned earlier. However, there are
some limitations that need to be taken into account when
applying our technique, e.g. BP algorithms tend to use
large amounts of memory. This requires us to take several
measures to make sure our algorithm does not unnecessarily
squander its resources. Whereas precomputing the single-
node potentials relieves us from storing binary masks and
segmentation information, label clustering and label prun-
ing [KT06] reduce the amount of pairwise potentials that
needs to be computed. It should be noted that the pairwise
potentials only depend on intensity information stored in the
labels. As a result, in case the amount of labels is sufficiently
reduced in number, it is possible to pre-compute and store
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Figure 7: (a) A cropped panorama frame from our waterfall scene. (b-c) An input frame of our skateboarding sequence, and

the processed frame with an expanded field of view. Motion blur has been added in an additional post-processing step.

all pairwise potentials in memory, without the need to retain
the intensity images themselves. Storing the potentials in
memory also reduces the required computation times from
a number of days to a few hours, depending on the scene.

5.2. Future work

During our experiments, we have warped all video frames
to the image plane of the references frame. This effectively
reduces the resolution of the background pixels in the outer
regions of our background panorama. In the future, we
would like to test the effectiveness of our approach on other
parametrizations of the scene intensities, such as cylindrical
or spherical pixel coordinates.

Another interesting area for future work could be de-
vising a hierarchical approach to our dynamic background
estimation procedure. Building on the results from a lower
resolution level, we might be able to narrow down the
number of candidate labels for each new iteration.

6. Conclusion

Besides presenting the idea of editing panning/rotating video
sequences using a full panoramic representation, we present
a robust video mosaicing algorithm that produces high qual-
ity panoramas without parallax artefacts, seams or blurring,
while retaining repetitive dynamic elements. Our technique
allows the user to control the camera of a panning/rotating
video in a post-processing step, allowing for a seamless
change of aspect ratio or camera motion path. It also facili-
tates other post-processing steps such as adding motion blur
or video stabilization.
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