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Abstract

We propose a technique for cheap and efficient acqui-
sition of mesostructure normal maps from specularities,
which only requires a simple LCD monitor and a digital
camera. Coded illumination enables us to capture subtle
surface details with only a handful of images. In addition,
our method can deal with heterogeneous surfaces, and high
albedo materials. We are able to recover highly detailed
mesostructures, which was previously only possible with an
expensive hardware setup.

1. Introduction
A wide variety of methods exists for scanning 3D geom-

etry. Most methods focus on acquiring the global shape of
an object, but ignore small-scale details. In this paper we
present an efficient technique for scanning such small-scale
surface details or mesostructures using cheap, off-the-shelf
hardware. Our method outputs a normal map of the scanned
surface. Normals can be transformed into the original 3D
shape of the surface [8], or they can be combined with the
output of a global shape acquisition method [23]. In com-
puter graphics, normals can be added as texture maps to
enrich 3D models with relief, and can be rendered directly
using graphics hardware.

Most normal acquisition methods are based on photo-
metric stereo [38]. These approaches usually assume a per-
fectly matte surface. However, many materials do not meet
this assumption and are thus ill-suited for specular objects.
Instead of circumventing this problem, e.g. by filtering out
highlights [36], techniques have been developed specifically
for specular and mirroring surfaces [14]. Some of these
methods focus only on recovering global shape [27, 11, 2],
or assume that the surface is an ideal reflector [32]. Other
people have developed techniques that use specular high-
lights as cues [12], because highlights are barely affected by
subsurface light transport. This makes it possible to recover
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transparent, translucent and low albedo surfaces. Our work
continues along this direction, and bears similarity to that of
Chen et al. [4], since we also focus on specular mesostruc-
ture acquisition. Our method however, offers faster acquisi-
tion, and produces more detailed normal maps. High resolu-
tion specularity-based scanning of mesostructure has been
demonstrated before, requiring an expensive and intricate
hardware [35, 16], whereas our setup is cheap and easy to
build (Fig. 1).

Since we rely only on highlights, our technique assumes
that the surface is specular. We demonstrate that even for
less specular (or glossy) materials, our technique still pro-
duces reasonable results.

Contributions We introduce the following contributions:
(1) improved detail and reduced acquisition time for spec-
ular mesostructures by using coded illumination; (2) robust
specularity detection, which makes it possible to deal with
heterogeneous materials and high albedo materials. Finally,
(3) we describe a cheap acquisition system that consists of
off-the-shelf components.

2. Related Work

A large body of work deals with recovering shape of
real-world objects. We distinguish two trends in computer
vision literature. First, stereo matching algorithms recover
depth maps using triangulation, by observing a scene from
two (or more) views [29]. Second, photometric stereo [38]
computes surface normals from a sequence of illumination
directions, while observing the scene from a single view-
point. Our technique can be classified in the latter category.

Stereo methods usually assume that the observed mate-
rials are perfectly diffuse. Other techniques have been de-
veloped that focus on more “difficult” materials, in partic-
ular specular materials. The effect of weak specular reflec-
tion can be filtered out in order to apply techniques that as-
sume a diffuse material. This can be realized with polariza-
tion [36, 37, 22, 34, 16], or color transformations [31, 17].
More general stereo techniques can deal with arbitrary
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Figure 1. Our setup
consists of a digi-
tal reflex camera,
LCD screen and
mesostructure.

BRDFs [42, 10, 13, 39]. Highly specular surfaces are par-
ticularly challenging, so specialized techniques have been
developed [14]. These techniques usually focus on recov-
ering global shape [21, 11, 41, 15, 32, 2, 19, 1]. Local sur-
face orientation can also be analyzed from specular high-
lights [27, 12, 4], and does not necessarily require that the
surface is an ideal reflector. Our technique extends this idea
by using coded illumination instead of regular light sources.

Most shape recovery methods focus on global shape, but
often ignore small-scale surface detail. Techniques have
been introduced specifically for recovering such details, in
the form of relief (height) maps or normal maps. Rush-
meier et al. [26] acquired normal maps from Lambertian
surfaces using photometric stereo [38]. Yu and Chang [40]
obtained relief maps by analyzing cast shadows. Neubeck et
al. [24] reconstructed relief from bidirectional texture func-
tions. Morris and Kutulakos [20] reconstructed exterior
surfaces of inhomogeneous transparent scenes by capturing
images from one or more viewpoints while moving a prox-
imal light source. Wang and Dana [35] used a special hard-
ware setup to measure normal maps, which basically esti-
mates normal direction based on the centroid of the specular
highlight. Ma et al. [16] computed the highlight’s centroid
directly by illuminating the surface with linear gradient pat-
terns. However, their method requires an expensive spher-
ical array of polarized light sources. Chen et al. [4] com-
puted normal maps directly from specularities using just a
video camera and a light source, but their technique requires
many images.

Our setup is inspired by previous work that uses com-
puter monitors as controllable illuminants. Monitors have
been used for environment matting [43] and photometric
stereo [5, 9]. Tarini et al. [32] analyzed the reflected pat-
terns from a monitor off mirroring objects to obtain depth
information. Similar to our technique, Bonfort et al. [2]
used Gray code patterns emitted from a monitor. However,
they focused on scanning the global shape of specular ob-
jects using triangulation.

3. Our Approach

In this section, we detail our method and acquisition
setup.

(a) 4 directions, 3 images (b) 16 directions, 5 images

(c) 64 directions, 7 images (d) 4096 directions, 13 images

Figure 2. Normal map reconstruction quality depends on the num-
ber of sampled light source directions, or angular sampling rate.

3.1. Overview

Inferring normals from specularities is fairly straightfor-
ward. The normal associated with a specular pixel is exactly
the halfway vector between the light direction and view di-
rection [4]. The accuracy of the solution will therefore im-
prove as more light directions are taken into account. We
refer to the amount of different light directions as angular
sampling rate. Fig. 2 shows the importance of having a high
angular sampling rate. Many samples are needed to recover
subtle surface details. When using a low sampling rate, cer-
tain normals will be missed (which shows up as quantiza-
tion artifacts here).

We attain a high angular sampling rate by using more
than one light at a time (Fig. 3). As will be explained in
section 3.3, our technique samples n different light source
directions, with O(log2 n) images. In contrast, Chen et
al.’s mesostructure-from-specularity technique requires n
images for n directions [4]. In order to reach a high enough
sampling rate, Chen et al. sample continuously using a
video camera. However, video often suffers from poor im-
age quality. Because our method requires a relatively low
number of images, it becomes practical to employ a digi-
tal still camera. Therefore, better quality and specifically
better resolution can be obtained, as still cameras have bet-
ter optics and larger sensors, and can get away with longer
exposure times.

3.2. Recovering Normal Maps from Specularities

Our goal is to find a normal map based on speculari-
ties [35, 4, 16]. To this end, we assume that the surface
is an ideal reflector. If we know that illumination arrives



Figure 3. Top: floodlit image and Gray code patterns; bottom: corresponding images. Each location on the monitor (red square) is directly
reflected (red circle). By decoding the Gray code patterns, we can recover the illumination direction, and consequently, the surface normal.

from direction �L and is reflected in direction �R, the normal
must be:

�N =
1

‖�L + �R‖ (�L + �R), (1)

Subsequently, at each specularity in the image, we use Eq. 1
to infer the corresponding normal, as done by Chen et
al. [4]. Therefore we reasonably assume the mesostructure
to be approximately planar and furthermore require a cali-
brated screen-camera-mesostructure setup.

Eq. 1 is only an approximation because a surface is never
perfectly flat (at the microscopic level). Consequently, light
is usually scattered in a small cone around the ideal reflec-
tion direction, and highlights become less clearly defined.
For instance, glossy materials like plastic exhibit such be-
havior. We will discuss how this affects our results in sec-
tion 3.5. We also ignore specular interreflection, for the sake
of simplicity.

3.3. Efficient Acquisition

A high angular sampling rate is required in order to re-
cover all possible normal orientations (see Fig. 2), which we
obtain by sampling more than one light direction per image.
We therefore require an array of light sources, where every
source can be switched on/off individually. This array could
be a computer monitor [43, 5, 9], a (hemi)spherical rig fit-
ted with lights [27, 18, 16], or an unstructured set of con-
trollable lights. In our implementation, we employ an LCD
monitor (Fig. 1), which provides us with a high-resolution,
regularly-spaced grid of light sources.

Under the assumption of ideal reflection described in the
previous section, we know that a specularity can only be
caused by exactly one light direction, which in turn corre-
sponds to a location on the LCD monitor. If this location
is known, we can simply compute the local normal using
Eq. 1. A naive solution would be to iterate through all
lights, enabling them one at a time, and observing which
pixels contain highlights [4]. Unfortunately, this becomes
impractical for thousands of light sources.

Instead, we identify monitor locations using Gray code
patterns, which have been used before to match surface
locations for stereo [28, 30]. These patterns encode dis-
crete spatial coordinates in a bit-wise fashion, and are robust
against small errors. For 2D patterns (Fig. 3), the horizontal

(a) Photo. (b) Diffuse. (c) Specular. (d) Confidence.

(e) Normal. (f) Depth. (g) (h)

Figure 4. Acquired maps from oiled human palm skin (massage
oil). (a) photo, (b) diffuse map, (c) specular map, (d) confidence
map (green: high confidence, red: low confidence), (e) normal
map, (f) depth map and (g,h) renderings.

and vertical coordinates are coded sequentially. Given that
spatial coordinates lie in the range [1..m] × [1..n], we need
only log2(m) + log2(n) + 1 patterns. Gray codes can also
be used for an unstructured collection of light sources (even
though we did not implement this).

After having recorded the surface illuminated by the pat-
terns, we simply decode the Gray patterns by determining
whether a given pixel is specular or not, using the tech-
niques explained in the following section. See Fig. 3 for
an illustration.

3.4. Specularity Detection

If the surface has a negligible albedo and is homoge-
neous, specularities can easily be detected using global
thresholding [34, 4]. However, these assumptions do not
hold in practice.

Heterogeneous objects may reflect more or less light de-
pending on the spatial location, which makes it hard to de-
termine a global threshold that can be applied to all pixels.
We therefore normalize a pixel’s intensity w.r.t. the maxi-
mally possible intensity at that pixel’s location. This maxi-
mum can be found by emitting an additional floodlit pattern
(all lights enabled). After normalization, we can simply ap-
ply global thresholding like before. See Fig. 9 for examples
of heterogeneous surfaces (“graphics card” and “wallet”).



(a) Confidence map (green: high confidence, red: low confidence).

(b) Original normal map.

(c) Normal map with filled gaps.

Figure 5. Uncertain regions are filled in by interpolating normals
from the nearest valid neighbors.

Even with normalization, specularity detection can be
very sensitive to the chosen threshold, in particular for high
albedo materials such as human skin (Fig. 4). We therefore
wish to isolate the specular component in the input images
using polarization [22]. The polarization state of light is ap-
proximately preserved under specular reflection, and “ran-
domized” scattered after diffuse reflection [6]. Thus, under
polarized illumination, we can get a diffuse-only image by
placing a linear polarizing filter in front of the lens, oriented
orthogonally to the polarization direction. Rotating the filter
by 90 degrees yields an image that contains both the specu-
lar and diffuse component. Specularity isolation is achieved
simply by subtracting the two images. Note that because we
are using an LCD monitor, we get polarized illumination
“for free”. This more robust detection method comes at the
cost of doubling the required number of images.

3.5. Limitations

There are two factors that negatively influence recon-
struction results, namely occlusion and glossiness. This
section describes how they affect our results. Note that
these issues also occur with previous mesostructure-from-
specularity methods [35, 4, 16].

Occlusion Self-shadowing may occur in deep grooves
and pits, for instance, and results in meaningless informa-
tion. We can easily detect these regions using a floodlit pat-
tern (Fig. 3). We assign a confidence to each pixel, chosen

Figure 6. Comparison between results from a specular and glossy
surface. The left image shows the result of capturing a glossy plas-
tic surface. In the right image, the same surface was acquired after
having applied a fine layer of oil in order to increase specularity. If
the surface is more specular, finer normal variations are detected,
whereas the glossy version looks more quantized.
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Figure 7. Error analysis for glossy materials on a synthetic exam-
ple. The average angular error of our reconstruction is plotted in
function of the glossiness. The solid curve shows the error mea-
sured on confident pixels only. The dashed curve shows the error
when taking into account all pixels, including interpolated ones.

proportional to a pixel’s intensity, and fill low confidence
areas by interpolating normals from the nearest valid neigh-
bors (Fig 5).

Glossiness Our method becomes less accurate for glossier
(or rougher) materials. This is visually demonstrated in
Fig. 6 and verified on a ground thruth comparison in Fig. 7.
For the latter figure, we generated images of a mesostruc-
ture using a photorealistic renderer (PBRT, [25]) under
our Gray-coded illumination patterns. We employed a
physically-based reflectance model [33], which allows for
controlling the glossiness. Notice how the error increases
only slightly for more gloss. Including interpolated normals
of less confident pixels tend to add an overal increase to the
numerical error. Fortunately, the interpolation tends to pro-
duce smooth results, and thus does not introduce visually
distracting artifacts.

The reason why glossier materials result in less accurate
normal maps is illustrated in Fig. 8. It shows how Gray
codes are interpreted for a very specular material (narrow
specular lobe) and for a more glossy object (broader lobe).
As the Gray code patterns become more refined, it becomes
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Figure 8. Illustration of precision issues associated with glossy ma-
terials. A specular BRDF directly picks up the Gray code patterns,
whereas glossy BRDFs blurs the patterns. For fine patterns, this
convolution makes specularity detection ambiguous, which means
that no more information can be gained after a certain refinement
level.

harder to distinguish between the black and white parts of
the pattern, which limits the attainable angular sampling
rate. We therefore stop refinement when the sum of ab-
solute differences (SAD) between consecutive refinements
drops below a threshold. Even if a material is glossy, we can
still infer a reasonable normal map, albeit with less angular
detail (Fig. 6,Fig. 7).

4. Results
Our results were generated with a regular 1280 × 1024

LCD screen, a digital SLR camera (Canon EOS 400D with
default EF-S 18-55mm, f/3.5-5.6 kit lens) and a linear polar-
izing filter. The camera, screen and mesostructure are cali-
brated with respect to each other. The screen and camera are
facing a similar direction and hence are calibrated using a
(spherical) mirror to make the screen visible to the camera,
similar to the method of Francken et al. [7]. The mesostruc-
ture is attached to a supporting surface with position and
orientation determined using a calibration pattern [3].

Assuming the surface is in perfect focus, and depending
on the mesostructure’s placement, we have a spatial resolu-
tion of approximately 40 normal pixels per millimeter. The
largest number of patterns we used in our setup is 15 (one
floodlit, 7 horizontal, 7 vertical). The angular resolution
then is approximately 1.12 normals per degree. The recov-
erable normal angles range from -22.5 to 22.5 degrees w.r.t.
the supporting surface’s normal. Using a larger screen, or
multiple screens, can improve this range. Even though the
normal range seems limited, it suffices for the mesostruc-
tures we scanned. We always obtained a visually plausible
reconstruction. Moreover, reflected light from grazing an-
gles is often blocked anyway due to self-occlusions.

Fig. 4 shows the different maps that we obtain from an
acquired surface. In the first place, our method returns a
normal map (with confidence), which can be turned into a
depth map [8]. As a byproduct of the polarization-based
separation discussed in Sec. 3.4, we also infer a diffuse and
specular map, which were computed from the floodlit illu-
mination pattern. These maps can easily be used as textures

material #directions #images polarization
graphics card 256 18 yes
metal coaster 1024 11 no

wallet 1024 11 no
rough glass 16384 30 yes

Table 1. Number of images used in Fig. 9, in function of the
number of sampled light directions. Polarization is used for high
albedo surfaces, which doubles number of images (accounted for
in #images-column).

in graphics applications, and rendered in real-time using
graphics hardware. In Fig. 9 we show different normal maps
and renderings, for a variety of materials: metal (“coaster”,
“wallet”, “graphics card”), plastic (“graphics card”), semi-
transparent (“rough glass”), organic (“leather”) and hetero-
geneous (“graphics card”, “wallet”) materials. For each of
the recovered surfaces, the angular sampling rate and num-
ber of acquired images, are given in Table 1.

5. Conclusions
We have presented an efficient acquisition method for

mesostructure using specularities. Our technique employs
coded illumination in order to achieve a high angular sam-
pling rate, and robust specularity detection for heteroge-
neous and high albedo materials. We have demonstrated
that highly detailed mesostructures can be recovered, using
a cheap setup.

Currently, our method ignores the diffuse component. It
would be interesting to develop a hybrid method that incor-
porates both components for computing a normal map.Our
setup limits the range of normals that can be acquired. A
larger monitor, or multiple monitors, would alleviate this
problem. Another possibility would be to illuminate the
mesostructure from different angles by using a turntable,
and then to register and fuse the results.
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